Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Chembiochem ; 25(6): e202300679, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38205937

ABSTRACT

The connection between 3d (Cu) and 4d (Mo) via the "Mo-S-Cu" unit is called Mo-Cu antagonism. Biology offers case studies of such interactions in metalloproteins such as Mo/Cu-CO Dehydrogenases (Mo/Cu-CODH), and Mo/Cu Orange Protein (Mo/Cu-ORP). The CODH significantly maintains the CO level in the atmosphere below the toxic level by converting it to non-toxic CO2 for respiring organisms. Several models were synthesized to understand the structure-function relationship of these native enzymes. However, this interaction was first observed in ruminants, and they convert molybdate (MoO4 2- ) into tetrathiomolybdate (MoS4 2- ; TTM), reacting with cellular Cu to yield biological unavailable Mo/S/Cu cluster, then developing Cu-deficiency diseases. These findings inspire the use of TTM as a Cu-sequester drug, especially for treating Cu-dependent human diseases such as Wilson diseases (WD) and cancer. It is well known that a balanced Cu homeostasis is essential for a wide range of biological processes, but negative consequence leads to cell toxicity. Therefore, this review aims to connect the Mo-Cu antagonism in metalloproteins and anti-copper therapy.


Subject(s)
Copper , Metalloproteins , Humans , Copper/metabolism , Molybdenum/pharmacology , Molybdenum/therapeutic use
2.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38050998

ABSTRACT

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Subject(s)
Neoplasms , Nitrosamines , Tobacco, Smokeless , Humans , Carcinogens/toxicity , Mutagens , Neoplasms/chemically induced , Nitrates , Nitrites , Nitrosamines/toxicity , Nitrosamines/chemistry , Nitrosamines/metabolism , Tobacco, Smokeless/toxicity
3.
Molecules ; 28(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241969

ABSTRACT

A story going back almost 40 years is presented in this manuscript. This is a different and more challenging way of reporting my research and I hope it will be useful to and target a wide-ranging audience. When preparing the manuscript and collecting references on the subject of this paper-aldehyde oxidoreductase from Desulfovibrio gigas-I felt like I was travelling back in time (and space), bringing together the people that have contributed most to this area of research. I sincerely hope that I can give my collaborators the credit they deserve. This study is not presented as a chronologic narrative but as a grouping of topics, the development of which occurred over many years.


Subject(s)
Aldehyde Oxidoreductases , Desulfovibrio , Humans , Desulfovibrio gigas , Molybdenum , Aldehyde Dehydrogenase
4.
Molecules ; 29(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38202704

ABSTRACT

Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.


Subject(s)
Selenium , Humans , Cysteine , Selenocysteine , Sulfur , Oxidation-Reduction , Biology
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499524

ABSTRACT

Caveolin-2 is a protein suitable for the study of interactions of caveolins with other proteins and lipids present in caveolar lipid rafts. Caveolin-2 has a lower tendency to associate with high molecular weight oligomers than caveolin-1, facilitating the study of its structural modulation upon association with other proteins or lipids. In this paper, we have successfully expressed and purified recombinant human caveolin-2 using E. coli. The structural changes of caveolin-2 upon interaction with a lipid bilayer of liposomes were characterized using bioinformatic prediction models, circular dichroism, differential scanning calorimetry, and fluorescence techniques. Our data support that caveolin-2 binds and alters cholesterol-rich domains in the membranes through a CARC domain, a type of cholesterol-interacting domain in its sequence. The far UV-CD spectra support that the purified protein keeps its folding properties but undergoes a change in its secondary structure in the presence of lipids that correlates with the acquisition of a more stable conformation, as shown by differential scanning calorimetry experiments. Fluorescence experiments using egg yolk lecithin large unilamellar vesicles loaded with 1,6-diphenylhexatriene confirmed that caveolin-2 adsorbs to the membrane but only penetrates the core of the phospholipid bilayer if vesicles are supplemented with 30% of cholesterol. Our study sheds light on the caveolin-2 interaction with lipids. In addition, we propose that purified recombinant caveolin-2 can provide a new tool to study protein-lipid interactions within caveolae.


Subject(s)
Caveolin 1 , Escherichia coli , Humans , Escherichia coli/metabolism , Caveolin 1/metabolism , Caveolin 2/metabolism , Caveolae/metabolism , Cholesterol/metabolism , Membrane Microdomains/metabolism , Lipid Bilayers/metabolism
6.
J Biol Inorg Chem ; 25(5): 685-704, 2020 08.
Article in English | MEDLINE | ID: mdl-32676771

ABSTRACT

Mycobacterium tuberculosis (Mtb) has an old history as a human pathogen and still kills over one million people every year. One key feature of this bacterium is its dormancy: a phenomenon responsible for major changes in its metabolism and replication that have been associated with the need for a lengthy therapy for Mtb. This process is regulated by key heme-based sensors, particularly DosT and DevS (DosS), among other co-regulators, and also linked to nitrogen utilization (nitrate/nitrite) and stringent responses. In face of the current threat of tuberculosis, there is an urgent need to develop new therapeutic agents capable of targeting the dormant state, associated with the need for a lengthy therapy. Interestingly, many of those key proteins are indeed metallo-containing or metallo-dependent biomolecules, opening exciting bioinorganic opportunities. Here, we critically reviewed a series of small molecules targeting key proteins involved in these processes, including DosT/DevS/DevR, RegX3, MprA, MtrA, NarL, PknB, Rel, PPK, nitrate and nitrite reductases, GlnA1, aiming for new opportunities and alternative therapies. In the battle against Mycobacterium tuberculosis, new drug targets must be searched, in particular  those involved in dormancy. A series of exciting cases for drug development involving metallo-containing or metallo-dependent biomolecules are reviewed, opening great opportunities for the bioinorganic chemistry community.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Chemistry, Bioinorganic , Humans , Molecular Structure , Tuberculosis/microbiology
7.
J Biol Inorg Chem ; 24(3): 317-330, 2019 05.
Article in English | MEDLINE | ID: mdl-30838452

ABSTRACT

Recently, we observed that at extreme alkaline pH, cytochrome b5 (Cb5) acquires a peroxidase-like activity upon formation of a low spin hemichrome associated with a non-native state. A functional characterization of Cb5, in a wide pH range, shows that oxygenase/peroxidase activities are stimulated in alkaline media, and a correlation between tyrosine ionization and the attained enzymatic activities was noticed, associated with an altered heme spin state, when compared to acidic pH values at which the heme group is released. In these conditions, a competitive assay between imidazole binding and Cb5 endogenous heme ligands revealed the appearance of a binding site for this exogenous ligand that promotes a heme group exposure to the solvent upon ligation. Our results shed light on the mechanism behind Cb5 oxygenase/peroxidase activity stimulation in alkaline media and reveal a role of tyrosinate anion enhancing Cb5 enzymatic activities on the distorted protein before maximum protein unfolding.


Subject(s)
Cytochromes b5/chemistry , Heme/chemistry , Oxygenases/chemistry , Peroxidases/chemistry , Tyrosine/chemistry , Catalytic Domain , Cytochromes b5/metabolism , Heme/metabolism , Humans , Hydrogen-Ion Concentration , Imidazoles/chemistry , Imidazoles/metabolism , Ligands , Oxidation-Reduction , Oxygen/chemistry , Oxygen/metabolism , Oxygenases/metabolism , Peroxidases/metabolism , Protein Binding
8.
Chemistry ; 25(17): 4309-4314, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30715753

ABSTRACT

The nitration of tyrosine residues in proteins represents a specific footprint of the formation of reactive nitrogen species (RNS) in vivo. Here, the fusion product of orange protein (ATCUN-ORP) was used as an in vitro model system containing an amino terminal Cu(II)- and Ni(II)-binding motif (ATCUN) tag at the N-terminus and a native tyrosine residue in the metal-cofactor-binding region for the formation of 3-NO2 -Tyr (3-NT). It is shown that NiII -ATCUN unusually performs nitration of tyrosine at physiological pH in the presence of the NO2 - /SO3 2- /O2 system, which is revealed by a characteristic absorbance band at 430 nm in basic medium and 350 nm in acidic medium (fingerprint of 3-NT). Kinetics studies showed that the formation of 3-NT depends on sulfite concentration over nitrite concentration suggesting key intermediate products, identified as oxysulfur radicals, which are detected by spin-trap EPR study by using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This study describes a new route in the formation of 3-NT, which is proposed to be linked with the sulfur metabolism pathway associated with the progression of disease occurrence in vivo.

9.
Biochim Biophys Acta Bioenerg ; 1859(2): 78-87, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29111436

ABSTRACT

Cytochrome b5 is the main electron acceptor of cytochrome b5 reductase. The interacting domain between both human proteins has been unidentified up to date and very little is known about its redox properties modulation upon complex formation. In this article, we characterized the protein/protein interacting interface by solution NMR and molecular docking. In addition, upon complex formation, we measured an increase of cytochrome b5 reductase flavin autofluorescence that was dependent upon the presence of cytochrome b5. Data analysis of these results allowed us to calculate a dissociation constant value between proteins of 0.5±0.1µM and a 1:1 stoichiometry for the complex formation. In addition, a 30mV negative shift of cytochrome b5 reductase redox potential in presence of cytochrome b5 was also measured. These experiments suggest that the FAD group of cytochrome b5 reductase increase its solvent exposition upon complex formation promoting an efficient electron transfer between the proteins.


Subject(s)
Cytochrome-B(5) Reductase/chemistry , Cytochromes b5/chemistry , Flavin-Adenine Dinucleotide/chemistry , Molecular Docking Simulation , Cytochrome-B(5) Reductase/genetics , Cytochrome-B(5) Reductase/metabolism , Cytochromes b5/genetics , Cytochromes b5/metabolism , Flavin-Adenine Dinucleotide/genetics , Flavin-Adenine Dinucleotide/metabolism , Humans , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Protein Domains
10.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 373-378, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28958890

ABSTRACT

In alkaline media (pH12) a catalytic peroxidase activity of cytochrome b5 was found associated to a different conformational state. Upon incubation at this pH, cytochrome b5 electronic absorption spectrum was altered, with disappearance of characteristic bands of cytochrome b5 at pH7.0. The appearance of new electronic absorption bands and EPR measurements support the formation of a cytochrome b5 class B hemichrome with an acquired ability to bind polar ligands. This hemichrome is characterized by a negative formal redox potential and the same folding properties than cytochrome b5 at pH7. The acquired peroxidase-like activity of cytochrome b5 found at pH12, driven by a hemichrome formation, suggests a role of this protein in peroxidation products propagation.


Subject(s)
Cytochromes b5/chemistry , Cytochromes b5/metabolism , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction
11.
Inorg Chem ; 57(14): 8078-8088, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29956539

ABSTRACT

Copper-cysteine interactions play an important role in Biology and herein we used the copper-substituted rubredoxin (Cu-Rd) from Desulfovibrio gigas to gain further insights into the copper-cysteine redox chemistry. EPR spectroscopy results are consistent with Cu-Rd harboring a CuII center in a sulfur-rich coordination, in a distorted tetrahedral structure ( g∥,⊥ = 2.183 and 2.032 and A∥,⊥ = 76.4 × 10-4 and 12 × 10-4 cm-1). In Cu-Rd, two oxidation states at Cu-center (CuII and CuI) are associated with Cys oxidation-reduction, alternating in the redox cycle, as pointed by electrochemical studies that suggest internal geometry rearrangements associated with the electron transfer processes. The midpoint potential of [CuI(S-Cys)2(Cys-S-S-Cys)]/[CuII(S-Cys)4] redox couple was found to be -0.15 V vs NHE showing a large separation of cathodic and anodic peaks potential (Δ Ep = 0.575 V). Interestingly, sulfur-rich CuII-Rd is highly stable under argon in dark conditions, which is thermodynamically unfavorable to Cu-thiol autoreduction. The reduction of copper and concomitant oxidation of Cys can both undergo two possible pathways: oxidative as well as photochemical. Under O2, CuII plays the role of the electron carrier from one Cys to O2 followed by internal geometry rearrangement at the Cu site, which facilitates reduction at Cu-center to yield CuI(S-Cys)2(Cys-S-S-Cys). Photoinduced (irradiated at λex = 280 nm) reduction of the CuII center is observed by UV-visible photolysis (above 300 nm all bands disappeared) and tryptophan fluorescence (∼335 nm peak enhanced) experiments. In both pathways, geometry reorganization plays an important role in copper reduction yielding an energetically compatible donor-acceptor system. This model system provides unusual stability and redox chemistry rather than the universal Cu-thiol auto redox chemistry in cysteine-rich copper complexes.

12.
Biochim Biophys Acta ; 1857(9): 1422-1429, 2016 09.
Article in English | MEDLINE | ID: mdl-27240719

ABSTRACT

A linear cluster formulated as [S2MoS2CuS2MoS2](3-), a unique heterometallic cluster found in biological systems, was identified in a small monomeric protein (named as Orange Protein). The gene coding for this protein is part of an operon mainly present in strict anaerobic bacteria, which is composed (in its core) by genes coding for the Orange Protein and two ATPase proposed to contain Fe-S clusters. In Desulfovibrio desulfuricans G20, there is an ORF, Dde_3197 that encodes a small protein containing several cysteine residues in its primary sequence. The heterologously produced Dde_3197 aggregates mostly in inclusion bodies and was isolated by unfolding with a chaotropic agent and refolding by dialysis. The refolded protein contained sub-stoichiometric amounts of iron atoms/protein (0.5±0.2), but after reconstitution with iron and sulfide, high iron load contents were detected (1.8±0.1 or 3.4±0.2) using 2- and 4-fold iron excess. The visible absorption spectral features of the iron-sulfur clusters in refolded and reconstituted Dde_3197 are similar and resemble the ones of [2Fe-2S] cluster containing proteins. The refolded and reconstituted [2Fe-2S] Dde_3197 are EPR silent, but after reduction with dithionite, a rhombic signal is observed with gmax=2.00, gmed=1.95 and gmin=1.92, consistent with a one-electron reduction of a [2Fe-2S](2+) cluster into a [2Fe-2S](1+) state, with an electron spin of S=½. The data suggests that Dde_3197 can harbor one or two [2Fe-2S] clusters, one being stable and the other labile, with quite identical spectroscopic properties, but stable to oxygen.


Subject(s)
Bacterial Proteins/chemistry , Desulfovibrio gigas/chemistry , Iron-Sulfur Proteins/chemistry , Operon , Amino Acid Sequence , Bacterial Proteins/genetics , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/genetics , Protein Folding
13.
Biochim Biophys Acta ; 1857(9): 1412-1421, 2016 09.
Article in English | MEDLINE | ID: mdl-27133504

ABSTRACT

Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the reduction of nitrite to nitric oxide in denitrifying bacteria, such as Marinobacter hydrocarbonoclasticus. Previous work demonstrated that the enzymatic activity depends on a structural pre-activation triggered by the entry of electrons through the electron transfer (ET) domain, which houses a heme c center. The catalytic activity of M. hydrocarbonoclasticus cd1NiR (Mhcd1NiR) was tested by mediated electrochemistry, using small ET proteins and chemical redox mediators. The rate of enzymatic reaction depends on the nature of the redox partner, with cytochrome (cyt) c552 providing the highest value. In situations where cyt c552 is replaced by either a biological (cyt c from horse heart) or a chemical mediator the catalytic response was only observed at very low scan rates, suggesting that the intermolecular ET rate is much slower. Molecular docking simulations with the 3D model structure of Mhcd1NiR and cyt c552 or cyt c showed that hydrophobic interactions favor the formation of complexes where the heme c domain of the enzyme is the principal docking site. However, only in the case of cyt c552 the preferential areas of contact and Fe-Fe distances between heme c groups of the redox partners allow establishing competent ET pathways. The coupling of the enzyme with chemical redox mediators was also found not to be energetically favorable. These results indicate that although low activity functional complexes can be formed between Mhcd1NiR and different types of redox mediators, efficient ET is only observed with the putative physiological electron donor cyt c552.


Subject(s)
Cytochromes/chemistry , Electron Transport , Nitrite Reductases/chemistry , Cytochrome c Group/chemistry , Molecular Docking Simulation , Oxidation-Reduction
14.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1455-1469, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28847524

ABSTRACT

Sulfate-reducing bacteria (SRB) are a diverse group of anaerobic microorganisms that obtain their energy from dissimilatory sulfate reduction. Some SRB species have high respiratory versatility due to the possible use of alternative electron acceptors. A good example is Desulfovibrio desulfuricans ATCC 27774, which grows in the presence of nitrate (end product: ammonium) with higher rates and yields to those observed in sulfate containing medium (end product: sulfide). In this work, the mechanisms supporting the respiratory versatility of D. desulfuricans were unraveled through the analysis of the proteome of the bacterium under different experimental conditions. The most remarkable difference in the two-dimensional gel electrophoresis maps is the high number of spots exclusively represented in the nitrate medium. Most of the proteins with increase abundance are involved in the energy metabolism and the biosynthesis of amino acids (or proteins), especially those participating in ammonium assimilation processes. qPCR analysis performed during different stages of the bacterium's growth showed that the genes involved in nitrate and nitrite reduction (napA and nrfA, respectively) have different expressions profiles: while napA did not vary significantly, nrfA was highly expressed at a 6h time point. Nitrite levels measured along the growth curve revealed a peak at 3h. Thus, the initial consumption of nitrate and concomitant production of nitrite must induce nrfA expression. The activation of alternative mechanisms for energy production, aside several N-assimilation metabolisms and detoxification processes, solves potential survival problems in adapting to different environments and contributes to higher bacterial growth rates.


Subject(s)
Bacterial Proteins/genetics , Desulfovibrio desulfuricans/genetics , Electrons , Gene Expression Regulation, Bacterial , Nitrate Reductase/genetics , Nitrite Reductases/genetics , Anaerobiosis/genetics , Bacterial Proteins/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Desulfovibrio desulfuricans/drug effects , Desulfovibrio desulfuricans/growth & development , Desulfovibrio desulfuricans/metabolism , Electron Transport , Electrophoresis, Gel, Two-Dimensional , Gene Ontology , Metabolic Networks and Pathways , Molecular Sequence Annotation , Nitrate Reductase/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Nitrite Reductases/metabolism , Oxidation-Reduction , Proteome/genetics , Proteome/metabolism , Sulfates/metabolism , Sulfates/pharmacology
15.
Inorg Chem ; 56(15): 8900-8911, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28742344

ABSTRACT

Orange protein (ORP) is a small bacterial protein, of unknown function, that contains a unique molybdenum/copper heterometallic cluster, [S2MoVIS2CuIS2MoVIS2]3- (Mo/Cu), non-covalently bound. The native cluster can be reconstituted in a protein-assisted mode by the addition of CuII plus tetrathiomolybdate to apo-ORP under controlled conditions. In the work described herein, we artificially inserted the ATCUN ("amino terminus Cu and Ni") motif in the Desulfovibrio gigas ORP (Ala1Ser2His3 followed by the native amino acid residues; modified protein abbreviated as ORP*) to increase our understanding of the Mo/Cu cluster assembly in ORP. The apo-ORP* binds CuII in a 1:1 ratio to yield CuII-ORP*, as clearly demonstrated by EPR (g||,⊥ = 2.183, 2.042 and ACu||,⊥ = 207 × 10-4 cm-1, 19 × 10-4 cm-1) and UV-visible spectroscopies (typical d-d transition bands at 520 nm, ε = 90 M-1 cm-1). The 1H NMR spectrum shows that His3 and His53 are significantly affected upon the addition of the CuII. The X-ray structure shows that these two residues are very far apart (Cα-Cα ≈ 27.9 Å), leading us to suggest that the metal-induced NMR perturbations are due to the interaction of two protein molecules with a single metal ion. Docking analysis supports the metal-mediated dimer formation. The subsequent tetrathiomolybdate binding, to yield the native Mo/Cu cluster, occurs only upon addition of dithiothreitol, as shown by UV-visible and NMR spectroscopies. Additionally, 1H NMR of AgI-ORP* (AgI used as a surrogate of CuI) showed that AgI strongly binds to a native methionine sulfur atom rather than to the ATCUN site, suggesting that CuII and CuI have two different binding sites in ORP*. A detailed mechanism for the formation of the Mo/Cu cluster is discussed, suggesting that CuII is reduced to CuI and transferred from the ATCUN motif to the methionine site; finally, CuI is transferred to the cluster-binding region, upon the interaction of two protein molecules. This result may suggest that copper trafficking is triggered by redox-dependent coordination properties of copper in a trafficking pathway.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Metalloproteins/chemistry , Molybdenum/chemistry , Binding Sites , Desulfovibrio gigas , Histidine/chemistry , Methionine/chemistry , Models, Chemical , Molecular Docking Simulation , Oxidation-Reduction , Protein Binding , Recombinant Fusion Proteins/chemistry , Silver/chemistry
16.
Inorg Chem ; 56(4): 2210-2220, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28128558

ABSTRACT

The Orange Protein (ORP) is a small bacterial protein, of unknown function, that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoVIS2CuIS2MoVIS2]3-, noncovalently bound. The apo-ORP is able to promote the formation and stabilization of this cluster, using CuII- and MoVIS42- salts as starting metallic reagents, to yield a Mo/Cu-ORP that is virtually identical to the native ORP. In this work, we explored the ORP capability of promoting protein-assisted synthesis to prepare novel protein derivatives harboring molybdenum heterometallic clusters containing iron, cobalt, nickel, or cadmium in place of the "central" copper (Mo/Fe-ORP, Mo/Co-ORP, Mo/Ni-ORP, or Mo/Cd-ORP). For that, the previously described protein-assisted synthesis protocol was extended to other metals and the Mo/M-ORP derivatives (M = Cu, Fe, Co, Ni, or Cd) were spectroscopically (UV-visible and electron paramagnetic resonance (EPR)) characterized. The Mo/Cu-ORP and Mo/Cd-ORP derivatives are stable under oxic conditions, while the Mo/Fe-ORP, Mo/Co-ORP, and Mo/Ni-ORP derivatives are dioxygen-sensitive and stable only under anoxic conditions. The metal and protein quantification shows the formation of 2Mo:1M:1ORP derivatives, and the visible spectra suggest that the expected {S2MoS2MS2MoS2} complexes are formed. The Mo/Cu-ORP, Mo/Co-ORP, and Mo/Cd-ORP are EPR-silent. The Mo/Fe-ORP derivative shows an EPR S = 3/2 signal (E/D ≈ 0.27, g ≈ 5.3, 2.5, and 1.7 for the lower M= ±1/2 doublet, and g ≈ 5.7 and 1.7 (1.3 predicted) for the upper M = ±3/2 doublet), consistent with the presence of either one S = 5/2 FeIII antiferromagnetically coupled to two S = 1/2 MoV or one S = 3/2 FeI and two S = 0 MoVI ions, in both cases in a tetrahedral geometry. The Mo/Ni-ORP shows an EPR axial S = 1/2 signal consistent with either one S = 1/2 NiI and two S = 0 MoVI or one S = 1/2 NiIII antiferromagnetically coupled to two S = 1/2 MoV ions, in both cases in a square-planar geometry. The Mo/Cu-ORP and Mo/Cd-ORP are described as {MoVI-CuI-MoVI} and {MoVI-CdII-MoVI}, respectively, while the other derivatives are suggested to exist in at least two possible electronic structures, {MoVI-MI-MoVI} ↔ {MoV-MIII-MoV}.

17.
J Am Chem Soc ; 138(28): 8834-46, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27348246

ABSTRACT

Carbon dioxide accumulation is a major concern for the ecosystems, but its abundance and low cost make it an interesting source for the production of chemical feedstocks and fuels. However, the thermodynamic and kinetic stability of the carbon dioxide molecule makes its activation a challenging task. Studying the chemistry used by nature to functionalize carbon dioxide should be helpful for the development of new efficient (bio)catalysts for atmospheric carbon dioxide utilization. In this work, the ability of Desulfovibrio desulfuricans formate dehydrogenase (Dd FDH) to reduce carbon dioxide was kinetically and mechanistically characterized. The Dd FDH is suggested to be purified in an inactive form that has to be activated through a reduction-dependent mechanism. A kinetic model of a hysteretic enzyme is proposed to interpret and predict the progress curves of the Dd FDH-catalyzed reactions (initial lag phase and subsequent faster phase). Once activated, Dd FDH is able to efficiently catalyze, not only the formate oxidation (kcat of 543 s(-1), Km of 57.1 µM), but also the carbon dioxide reduction (kcat of 46.6 s(-1), Km of 15.7 µM), in an overall reaction that is thermodynamically and kinetically reversible. Noteworthy, both Dd FDH-catalyzed formate oxidation and carbon dioxide reduction are completely inactivated by cyanide. Current FDH reaction mechanistic proposals are discussed and a different mechanism is here suggested: formate oxidation and carbon dioxide reduction are proposed to proceed through hydride transfer and the sulfo group of the oxidized and reduced molybdenum center, Mo(6+)═S and Mo(4+)-SH, are suggested to be the direct hydride acceptor and donor, respectively.

18.
Acc Chem Res ; 48(11): 2875-84, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26509703

ABSTRACT

It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both enzymes; however, Met and His have different roles. His participates directly on catalysis, and it is therefore detrimental for the catalytic cycle of FdH. Met only participates in substrate binding. We concluded that this small but key difference dictates the type of reaction that is catalyzed by each enzyme. In addition, it allows explaining why formate can bind in the Nap active site in the same way as the natural substrate (nitrate), but the reaction becomes stalled afterward.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/ultrastructure , Formate Dehydrogenases/chemistry , Formate Dehydrogenases/ultrastructure , Hydrogenase/chemistry , Hydrogenase/ultrastructure , Multienzyme Complexes/chemistry , Multienzyme Complexes/ultrastructure , Nitrate Reductase/chemistry , Nitrate Reductase/ultrastructure , Desulfovibrio desulfuricans , Models, Chemical
19.
J Biol Inorg Chem ; 21(1): 53-62, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26748795

ABSTRACT

A novel metalloprotein containing a unique [S2MoS2CuS2MoS2](3-) cluster, designated as Orange Protein (ORP), was isolated for the first time from Desulfovibrio gigas, a sulphate reducer. The orp operon is conserved in almost all sequenced Desulfovibrio genomes and in other anaerobic bacteria, however, so far D. gigas ORP had been the only ORP characterized in the literature. In this work, the purification of another ORP isolated form Desulfovibrio alaskensis G20 is reported. The native protein is monomeric (12443.8 ± 0.1 Da by ESI-MS) and contains also a MoCu cluster with characteristic absorption bands at 337 and 480 nm, assigned to S-Mo charge transfer bands. Desulfovibrio alaskensis G20 recombinant protein was obtained in the apo-form from E. coli. Cluster reconstitution studies and UV-visible titrations with tetrathiomolybdate of the apo-ORP incubated with Cu ions indicate that the cluster is incorporated in a protein metal-assisted synthetic mode and the protein favors the 2Mo:1Cu stoichiometry. In Desulfovibrio alaskensis G20, the orp genes are encoded by a polycistronic unit composed of six genes whereas in Desulfovibrio vulgaris Hildenborough the same genes are organized into two divergent operons, although the composition in genes is similar. The gene expression of ORP (Dde_3198) increased 6.6 ± 0.5 times when molybdate was added to the growth medium but was not affected by Cu(II) addition, suggesting an involvement in molybdenum metabolism directly or indirectly in these anaerobic bacteria.


Subject(s)
Bacterial Proteins/metabolism , Copper/chemistry , Desulfovibrio/metabolism , Molybdenum/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Molecular Sequence Data , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
20.
Biofouling ; 32(1): 95-108, 2016.
Article in English | MEDLINE | ID: mdl-26769222

ABSTRACT

The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.


Subject(s)
Bacterial Proteins , Biofilms/growth & development , Biofouling/prevention & control , Biopolymers , Extracellular Space , Bacterial Proteins/isolation & purification , Bacterial Proteins/physiology , Biopolymers/isolation & purification , Biopolymers/physiology , Culture Media/chemistry , Extracellular Space/chemistry , Extracellular Space/physiology , Nitrogen/analysis , Photoelectron Spectroscopy/methods , Polysaccharides/isolation & purification , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL