Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Glia ; 71(8): 1791-1803, 2023 08.
Article in English | MEDLINE | ID: mdl-36866453

ABSTRACT

Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Zika Virus Infection/complications , Zika Virus Infection/drug therapy , Zika Virus Infection/pathology , Neuroglia/metabolism , Central Nervous System/metabolism , Brain/metabolism
2.
J Neurochem ; 162(6): 501-513, 2022 09.
Article in English | MEDLINE | ID: mdl-35797221

ABSTRACT

Glioblastoma is the most common and malignant type of primary brain tumor. Previous studies have shown that alterations in centrosome amplification and its components are frequently found in treatment-resistant tumors and may be associated with tumor progression. A centrosome protein essential for centrosome biogenesis is the centromere protein J (CENPJ), known to control the proliferation of neural progenitors and hepatocarcinoma cells, and also neuronal migration. However, it remains unknown the role of CENPJ in glioblastoma. Here we show that CENPJ is overexpressed in human glioblastoma cell lines in comparison to human astrocytes. Using bioinformatics analysis, we find that high Cenpj expression is associated with poor prognosis in glioma patients. Examining Cenpj loss of function in glioblastoma by siRNA transfection, we find impairments in cell proliferation and migration. Using a Cenpj mutant version with the deleted PN2-3 or TCP domain, we found that a conserved PN2-3 region is required for glioblastoma migration. Moreover, Cenpj downregulation modulates glioblastoma morphology resulting in microtubules stabilization and actin filaments depolymerization. Altogether, our findings indicate that CENPJ controls relevant aspects of glioblastoma progression and might be a target for therapeutic intervention and a biomarker for glioma malignancy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Centromere/metabolism , Centromere/pathology , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioma/metabolism , Humans
3.
Curr Issues Mol Biol ; 44(3): 1257-1272, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35723307

ABSTRACT

Several studies have proved that glial cells, as well as neurons, play a role in pain pathophysiology. Most of these studies have focused on the contribution of central glial cells (e.g., microglia and astrocytes) to neuropathic pain. Likewise, some works have suggested that peripheral glial cells, particularly satellite glial cells (SGCs), and the crosstalk between these cells and the sensory neurons located in the peripheral ganglia, play a role in the phenomenon that leads to pain. Nonetheless, the study of SGCs may be challenging, as the validity of studying those cells in vitro is still controversial. In this study, a research protocol was developed to examine the potential use of primary mixed neuronal-glia cell cultures obtained from the trigeminal ganglion cells (TGCs) of neonate mice (P10-P12). Primary cultures were established and analyzed at 4 h, 24 h, and 48 h. To this purpose, phase contrast microscopy, immunocytochemistry with antibodies against anti-ßIII-tubulin and Sk3, scanning electron microscopy, and time-lapse photography were used. The results indicated the presence of morphological changes in the cultured SGCs obtained from the TGCs. The SGCs exhibited a close relationship with neurons. They presented a round shape in the first 4 h, and a more fusiform shape at 24 h and 48 h of culture. On the other hand, neurons changed from a round shape to a more ramified shape from 4 h to 48 h. Intriguingly, the expression of SK3, a marker of the SGCs, was high in all samples at 4 h, with some cells double-staining for SK3 and ßIII-tubulin. The expression of SK3 decreased at 24 h and increased again at 48 h in vitro. These results confirm the high plasticity that the SGCs may acquire in vitro. In this scenario, the authors hypothesize that, at 4 h, a group of the analyzed cells remained undifferentiated and, therefore, were double-stained for SK3 and ßIII-tubulin. After 24 h, these cells started to differentiate into SCGs, which was clearer at 48 h in the culture. Mixed neuronal-glial TGC cultures might be implemented as a platform to study the plasticity and crosstalk between primary sensory neurons and SGCs, as well as its implications in the development of chronic orofacial pain.

4.
J Cell Physiol ; 236(7): 5022-5035, 2021 07.
Article in English | MEDLINE | ID: mdl-33368262

ABSTRACT

Glioblastoma is the most lethal tumor of the central nervous system, presenting a very poor prognostic, with a survival around 16 months. The interaction of mesenchymal stem cells and tumor cells has been studied, showing a bias in their role favoring or going against aggressiveness. Natural products such as flavonoids have showed their anticancer properties and the synergic potential with the activation of microenvironment cells to inhibit tumor progression. Agathisflavone is a flavonoid studied in neurodegenerative diseases and cancer. The present study investigated the effect of flavonoid in the viability of heterogeneous glioblastoma (GBM) cells considering a coculture or conditioned medium of mesenchymal stem cells (MSCs) effect, as well as the dose-dependent effect of this flavonoid in tumor migration and differentiation via STAT3. Agathisflavone (3-10 µM) induced dose-dependent toxicity to GL-15 and U373 human GBM cells, since 24 h after treatments. It was not toxic to human MSC but modified the pattern of interaction with GBM cells. Agathisflavone also inhibited migration and increased differentiation of human GBM cells, associated with the reduction on the expression of STAT3. These results demonstrate that the flavonoid agathisflavone had a direct anti-glioma effect. However, could be observed its effect in MSCs response that may have an impact in controlling GBM growth and aggressiveness, an important factor to consider for new therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Biflavonoids/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Mesenchymal Stem Cells/metabolism , Brain Neoplasms/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Culture Media, Conditioned/pharmacology , Glioblastoma/pathology , Humans , STAT3 Transcription Factor/metabolism
5.
BMC Cancer ; 21(1): 1248, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34798868

ABSTRACT

BACKGROUND: Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. METHODS: Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. RESULTS: It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4-10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3-6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. CONCLUSION: This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , MicroRNAs/metabolism , Tumor Hypoxia/genetics , Tumor Microenvironment/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Down-Regulation , Genotype , Glioblastoma/metabolism , Glioblastoma/pathology , Glucose Transporter Type 1/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Octamer Transcription Factor-3/metabolism , Phenotype , Proto-Oncogene Proteins c-bcl-2/metabolism , SOXB1 Transcription Factors/metabolism , Survivin/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
6.
Semin Cancer Biol ; 58: 130-141, 2019 10.
Article in English | MEDLINE | ID: mdl-30266571

ABSTRACT

Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Animals , Blood-Brain Barrier/pathology , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects
7.
J Cell Physiol ; 235(4): 3798-3814, 2020 04.
Article in English | MEDLINE | ID: mdl-31613002

ABSTRACT

The first-line chemotherapy treatment for Glioblastoma (GBM) - the most aggressive and frequent brain tumor - is temozolomide (TMZ). The Sonic hedgehog (SHH) pathway is involved with GBM tumorigenesis and TMZ chemoresistance. The role of SHH pathway inhibition in the potentiation of TMZ's effects using T98G, U251, and GBM11 cell lines is investigated herein. The combination of GANT-61 and TMZ over 72 hr suggested a synergistic effect. All TMZ-resistant cell lines displayed a significant decrease in cell viability, increased DNA fragmentation and loss of membrane integrity. For T98G cells, G2 /M arrest was observed, while U251 cells presented a significant increase in reactive oxygen species production and catalase activity. All the cell lines presented acidic vesicles formation correlated to Beclin-1 overexpression. The combined treatment also enhanced GLI1 expression, indicating the presence of select resistant cells. The selective inhibition of the SHH pathway potentiated the cytotoxic effect of TMZ, thus becoming a promising in vitro strategy for GBM treatment.


Subject(s)
Beclin-1/genetics , Glioblastoma/drug therapy , Hedgehog Proteins/genetics , Temozolomide/pharmacology , Zinc Finger Protein GLI1/genetics , Animals , Antineoplastic Agents, Alkylating/pharmacology , Autophagy/drug effects , Carcinogenesis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Humans , Mice , Oxidative Stress/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
8.
Brain Behav Immun ; 85: 170-185, 2020 03.
Article in English | MEDLINE | ID: mdl-31059805

ABSTRACT

Microglia cells are the immune effector in the Central Nervous System (CNS). However, studies have showed that they contribute more to glioma progression than to its elimination. Rutin and its aglycone quercetin are flavonoids present in many fruits as well as plants and have been demonstrated to bear anti-inflammatory, antioxidant and antitumor properties also to human glioblastoma cell lines. Previous studies also demonstrated that rutin, isolated from the Brazilian plant Dimorphandra mollis Bent., presents immunomodulatory effect on astrocytes and microglia. In this study, we investigate the antitumor and immunomodulatory properties of rutin and its aglycone quercetin on the viability of glioma cells alone and under direct and indirect interaction with microglia. Flavonoid treatment of rat C6 glioma cells induced inhibition of proliferation and migration, and also induced microglia chemotaxis that was associated to the up regulation of tumor necrosis factor (TNF) and the down regulation of Interleukin 10 (IL-10) at protein and mRNA expression levels, regulation of mRNA expression for chemokines CCL2, CCL5 and CX3CL1, and Heparin Binding Growth Factor (HDGF), Insulin-like growth factor (IGF) and Glial cell-derived neurotrophic factor (GDNF) growth factors. Treatment of human U251 and TG1 glioblastoma cells with both flavonoids also modulated negatively the expression of mRNA for IL-6 and IL-10 and positively the expression of mRNA for TNF characterizing changes to the immune regulatory profile. Treatment of microglia and C6 cells either in co-cultures or during indirect interaction, via conditioned media from glioma cells treated with flavonoids or via conditioned media from microglia treated with flavonoids reduced proliferation and migration of glioma cells. It also directed microglia towards an inflammatory profile with increased expression of mRNA for IL-1ß, IL-6, IL-18 and decreased expression of mRNA for nitric oxide synthase 2 (NOS2) and prostaglandin-endoperoxide synthase 2 (PTGS2), arginase and transforming growth factor beta (TGF-ß), as well as Insulin-like growth factor (IGF). Treatment of U251 cells with flavonoids also reduced tumorigenesis when the cells were xenotransplanted in rat brains, and directed microglia and also astrocytes in the microenvironment of tumor cell implantation as well as in the brain parenchyma to a not favorable molecular inflammatory profile to the glioma growth, as observed in cultures. Together these results demonstrate that the flavonoid rutin and its aglycone quercetin present antiglioma effects related to the property of modulating the microglial inflammatory profile and may be considered for molecular and preclinical studies as adjuvant molecules for treatment of gliomas.


Subject(s)
Microglia , Rutin , Animals , Cells, Cultured , Flavonoids , Microglia/metabolism , Nitric Oxide Synthase Type II/metabolism , Quercetin/pharmacology , Rats , Rutin/pharmacology
9.
Purinergic Signal ; 15(4): 439-450, 2019 12.
Article in English | MEDLINE | ID: mdl-31478180

ABSTRACT

The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We previously showed that GBPs, such as guanosine-5'-monophosphate (GMP) or guanosine (GUO), promote the reorganization of extracellular matrix proteins in astrocytes, and increase the number of neurons in a neuron-astrocyte co-culture protocol. To delineate the molecular basis underlying these effects, we isolated cerebellar neurons in culture and treated them with a conditioned medium derived from astrocytes previously exposed to GUO or GMP (GBPs-ACM) or, directly, with GUO or GMP. Agreeing with the previous studies, there was an increase in the number of ß-tubulin III-positive neurons in both conditions, compared with controls. Interestingly, the increase in the number of neurons in the neuronal cultures treated directly with GUO or GMP was more prominent, suggesting a direct interaction of GBPs on cerebellar neurons. To investigate this issue, we assessed the role of adenosine and glutamate receptors and related intracellular signaling pathways after GUO or GMP treatment. We found an involvement of A2A adenosine receptors, ionotropic glutamate N-methyl-D-aspartate (NMDA), and non-NMDA receptors in the increased number of cerebellar neurons. The signaling pathways extracellular-regulated kinase (ERK), calcium-calmodulin-dependent kinase-II (CaMKII), protein kinase C (PKC), phosphatidilinositol-3'-kinase (PI3-K), and protein kinase A (PKA) are also potentially involved with GMP and GUO effect. Such results suggest that GMP and GUO, and molecules released in GBPs-ACM promote the survival or maturation of primary cerebellar neurons or both via interaction with adenosine and glutamate receptors.


Subject(s)
Adenosine/metabolism , Guanosine/metabolism , Neurons/metabolism , Receptors, Glutamate/metabolism , Animals , Astrocytes/metabolism , Central Nervous System/metabolism , Glutamic Acid/metabolism , Guanosine Monophosphate/metabolism , Receptors, Purinergic P1/metabolism
10.
Exp Cell Res ; 370(1): 68-77, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29902537

ABSTRACT

One of the major challenges in Glioblastoma (GBM) therapy relates with the existence of glioma stem-like cells (GSCs), known to be chemo- and radio-resistant. GSCs and non-stem GBM cells have the ability to interchange, emphasizing the importance of identifying common molecular targets among those cell sub-populations. Nucleolin overexpression has been recently associated with breast cancer sub-populations with different stem-like phenotype. The goal of this work was to evaluate the potential of cell surface nucleolin as a target in GBM cells. Different levels of nucleolin expression resulted in a 3.4-fold higher association of liposomes targeting nucleolin (functionalized with the nucleolin-binding F3 peptide) in U87, relative to GBM11 glioblastoma cells. Moreover, nucleolin was suggested as a potential marker in OCT4-, NANOG-positive GSC, and in the corresponding non-stem GBM cells, as well as in SOX2-positive GSC. Doxorubicin delivered by liposomes targeting nucleolin enabled a level of cytotoxicity that was 2.5- or 4.6-fold higher compared to the non-targeted counterparts. Importantly, an overexpression of nucleolin was also observed in cells of patient-derived samples, as compared with normal brain. Overall, these results suggested nucleolin as a therapeutic target in GBM.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cytotoxins/pharmacology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Biomarkers, Tumor/metabolism , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Glioma/drug therapy , Glioma/metabolism , Humans , Liposomes/pharmacology , Nanog Homeobox Protein/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Nucleolin
11.
Glia ; 66(8): 1542-1565, 2018 08.
Article in English | MEDLINE | ID: mdl-29464861

ABSTRACT

An outstanding characteristic of gliomas is their infiltration into brain parenchyma, a property that impairs complete surgical resection; consequently, these tumors might recur, resulting in a high mortality rate. Gliomas invade along preferential routes, such as those along white matter tracts and in the perineuronal and perivascular spaces. Brain extracellular components and their partners and modulators play a crucial role in glioma cell invasion. This review presents an extensive survey of the literature, showing how the brain extracellular matrix (ECM) is modulated during the glioma infiltration process. We explore aspects of ECM interaction with glioma cells, reviewing the main glycosaminoglycans, glycoproteins and proteoglycans. We discuss the roles of ECM-binding proteins, including CD44, RHAMM, integrins and axonal guidance molecules, and highlight the role of proteases and glycosidases in glioma infiltration; in binding and release chemokines, cytokines and growth factors; and in generating new bioactive ECM fragments. We also consider the roles of cytoskeletal signaling, angiogenesis, miRNAs and the glial-to-mesenchymal transition linked to glioma invasion. We closely discuss therapeutic approaches based on the modulation of the extracellular matrix, targeting the control of glioma infiltration, its relative failure in clinical trials, and potential means to overcome this difficulty.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Neoplasm Invasiveness/pathology , Neuroglia/metabolism , Animals , Cell Movement/physiology , Extracellular Matrix/metabolism , Humans , Neuroglia/pathology
12.
Anticancer Drugs ; 29(6): 520-529, 2018 07.
Article in English | MEDLINE | ID: mdl-29561308

ABSTRACT

Glioblastoma multiform (GBM) is the most common and devastating type of primary brain tumor, being considered the deadliest of human cancers. In this context, extensive efforts have been undertaken to develop new drugs that exhibit both antiproliferation and antimetastasis effects on GBM. 1,4-Naphthoquinone (1,4-NQ) scaffold has been found in compounds able to inhibit important biological targets associated with cancer, which includes DNA topoisomerase, Hsp90 and monoamine oxidase. Among potential antineoplastic 1,4-NQs is the plant-derived lapachol (2-hydroxy-3-prenyl-1,4-naphthoquinone) that was found to be active against the Walker-256 carcinoma and Yoshida sarcoma. In the present study, we examined the effect of polyamine (PA)-conjugated derivatives of lapachol, nor-lapachol and lawsone on the growth and invasion of the human GBM cells. The conjugation with PA (a spermidine analog) resulted in dose-dependent and time-dependent increase of cytotoxicity of the 1,4-NQs. In addition, in-vitro inhibition of GBM cell invasion by lapachol was increased upon PA conjugation. Previous biochemical experiments indicated that these PA-1,4-NQs are capable of inhibiting DNA human topoisomerase II-α (topo2α), a major enzyme involved in maintaining DNA topology. Herein, we applied molecular docking to investigate the binding of PA-1,4-NQs to the ATPase site of topo2α. The most active molecules preferentially bind at the ATP-binding site of topo2α, which is energetically favored by the conjugation with PA. Taken together, these findings suggested that the PA-1,4-NQ conjugates might represent potential molecules in the development of new drugs in chemotherapy for malignant brain tumors.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Naphthoquinones/pharmacology , Polyamines/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Binding Sites , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , DNA Topoisomerases, Type II/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Polyamines/chemical synthesis , Polyamines/chemistry , Primary Cell Culture
13.
Exp Cell Res ; 351(2): 173-181, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28034672

ABSTRACT

Mechanical properties of cells are known to be influenced by the actin cytoskeleton. In this article, the action of drugs that interact with the actin cortex is investigated by tether extraction and rheology experiments using optical tweezers. The influences of Blebbistatin, Cytochalasin D and Jasplakinolide on the cell mechanical properties are evaluated. The results, in contradiction to current views for Jasplakinolide, show that all three drugs and treatments destabilize the actin cytoskeleton, decreasing the cell membrane tension. The cell membrane bending modulus increased when the actin cytoskeleton was disorganized by Cytochalasin D. This effect was not observed for Blebbistatin and Jasplakinolide. All drugs decreased by two-fold the cell viscoelastic moduli, but only Cytochalasin D was able to alter the actin network into a more fluid-like structure. The results can be interpreted as the interplay between the actin network and the distribution of myosins as actin cross-linkers in the cytoskeleton. This information may contribute to a better understanding of how the membrane and cytoskeleton are involved in cell mechanical properties, underlining the role that each one plays in these properties.


Subject(s)
Actin Cytoskeleton/drug effects , Cytochalasin D/pharmacology , Depsipeptides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Myosins/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Animals , Biomechanical Phenomena , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Elasticity/drug effects , Humans , Mice , NIH 3T3 Cells , Optical Tweezers , Rheology , Viscosity/drug effects
14.
J Neuroinflammation ; 14(1): 79, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28388962

ABSTRACT

BACKGROUND: The irinotecan (CPT-11) causes intestinal mucositis and diarrhea that may be related to changes in the enteric nervous system (ENS). In inflammatory condition, mast cells release a variety of pro-inflammatory mediators that can interact with the ENS cells. It has not been explored whether CPT-11 is able to alter the enteric glial and neuronal cell, and the role of mast cells in this effect. Therefore, this study was conducted to investigate the effect of CPT-11 on the enteric glial and neuronal cells, as well as to study the role of mast cells in the CPT-11-induced intestinal mucositis. METHODS: Intestinal mucositis was induced in Swiss mice by the injection of CPT-11 (60 mg/kg, i.p.) once a day for 4 days following by euthanasia on the fifth day. To investigate the role of mast cells, the mice were pretreated with compound 48/80 for 4 days (first day, 0.6 mg/kg; second day, 1.0 mg/kg; third day, 1.2 mg/kg; fourth day, 2.4 mg/kg) to induce mast cell degranulation before the CPT-11 treatment. RESULTS: Here, we show that CPT-11 increased glial fibrillary acidic protein (GFAP) and S100ß gene and S100ß protein expressions and decreased HuC/D protein expression in the small intestine segments. Concomitantly, CPT-11 enhanced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels and inducible nitric oxide synthase (iNOS) gene expression, associated with an increase in the total number macrophages (positive cells for ionized calcium-binding adapter molecule, Iba-1) and degranulated mast cells in the small intestine segments and caused significant weight loss. The pretreatment with compound 48/80, an inductor of mast cells degranulation, significantly prevented these CPT-11-induced effects. CONCLUSIONS: Our data suggests the participation of mast cells on the CPT-11-induced intestinal mucositis, macrophages activation, enteric reactive gliosis, and neuron loss.


Subject(s)
Camptothecin/analogs & derivatives , Enteric Nervous System/metabolism , Gliosis/chemically induced , Gliosis/metabolism , Mast Cells/metabolism , Neurons/metabolism , Animals , Antineoplastic Agents, Phytogenic/toxicity , Camptothecin/toxicity , Cell Count , Enteric Nervous System/drug effects , Enteric Nervous System/pathology , Gliosis/pathology , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/pathology , Irinotecan , Mast Cells/drug effects , Mast Cells/pathology , Mice , Neurons/drug effects , Neurons/pathology , Random Allocation
15.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Article in English | MEDLINE | ID: mdl-28032215

ABSTRACT

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Subject(s)
Brain Neoplasms/metabolism , Carcinogenesis/metabolism , Glioma/metabolism , Hydroxybutyrates/metabolism , Neoplastic Stem Cells/metabolism , gamma-Aminobutyric Acid/metabolism , Aged , Animals , Brain/metabolism , Brain/pathology , Brain/surgery , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Carcinogenesis/pathology , Cell Death/physiology , Cell Proliferation/physiology , Child , Child, Preschool , Female , Glioma/pathology , Glioma/surgery , Humans , Male , Mice, Nude , Middle Aged , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Succinate-Semialdehyde Dehydrogenase/metabolism
16.
Biochim Biophys Acta ; 1850(4): 722-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25554223

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. METHODS: We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. RESULTS: The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. CONCLUSIONS: The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. GENERAL SIGNIFICANCE: We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Glioblastoma/enzymology , Protein Kinase C/antagonists & inhibitors , Tamoxifen/pharmacology , Apoptosis/drug effects , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dacarbazine/pharmacology , Drug Synergism , Glioblastoma/pathology , Humans , Phosphorylation , Temozolomide
17.
Cancer Cell Int ; 16: 46, 2016.
Article in English | MEDLINE | ID: mdl-27330409

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor presenting self-renewing cancer stem cells. The role of these cells on the development of the tumors has been proposed to recapitulate programs from embryogenesis. Recently, the embryonic transforming growth factor-ß (TGF-ß) protein Nodal has been shown to be reactivated upon tumor development; however, its availability in GBM cells has not been addressed so far. In this study, we investigated by an original approach the mechanisms that dynamically control both intra and extracellular Nodal availability during GBM tumorigenesis. METHODS: We characterized the dynamics of Nodal availability in both stem and more differentiated GBM cells through morphological analysis, immunofluorescence of Nodal protein and of early (EEA1 and Rab5) and late (Rab7 and Rab11) endocytic markers and Western Blot. Tukey's test was used to analyze the prevalent correlation of Nodal with different endocytic markers inside specific differentiation states, and Sidak's multiple comparisons test was used to compare the prevalence of Nodal/endocytic markers co-localization between two differentiation states of GBM cells. Paired t test was used to analyze the abundance of Nodal protein, in extra and intracellular media. RESULTS: The cytoplasmic distribution of Nodal was dynamically regulated and strongly correlated with the differentiation status of GBM cells. While Nodal-positive vesicle-like particles were symmetrically distributed in GBM stem cells (GBMsc), they presented asymmetric perinuclear localization in more differentiated GBM cells (mdGBM). Strikingly, when subjected to dedifferentiation, the distribution of Nodal in mdGBM shifted to a symmetric pattern. Moreover, the availability of both intracellular and secreted Nodal were downregulated upon GBMsc differentiation, with cells becoming elongated, negative for Nodal and positive for Nestin. Interestingly, the co-localization of Nodal with endosomal vesicles also depended on the differentiation status of the cells, with Nodal seen more packed in EEA1/Rab5 + vesicles in GBMsc and more in Rab7/11 + vesicles in mdGBM. CONCLUSIONS: Our results show for the first time that Nodal availability relates to GBM cell differentiation status and that it is dynamically regulated by an endocytic pathway during GBM tumorigenesis, shedding new light on molecular pathways that might emerge as putative targets for Nodal signaling in GBM therapy.

18.
Glia ; 63(6): 921-35, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25703790

ABSTRACT

Enteric glial cells were first described at the end of the 19th century, but they attracted more interest from researchers only in the last decades of the 20th. Although, they have a different embryological origin, the enteric GLIA share many characteristics with astrocytes, the main glial cell type of the central nervous system (CNS), such as in their expression of the same markers and in their functions. Here we review the construction of the enteric nervous system (ENS), with a focus on enteric glia, and also the main studies that have revealed the action of enteric glia in different aspects of gastrointestinal tract homeostasis, such as in the intestinal barrier, in communications with neurons, and in their action as progenitor cells. We also discuss recent discoveries about the roles of enteric glia in different disorders that affect the ENS, such as degenerative pathologies including Parkinson's and prion diseases, and in cases of intestinal diseases and injury.


Subject(s)
Enteric Nervous System/physiology , Neuroglia/physiology , Animals , Cell Communication/physiology , Enteric Nervous System/physiopathology , Humans , Neurogenesis/physiology
19.
BMC Cancer ; 14: 923, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25482099

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. METHODS: Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. RESULTS: Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood-brain barrier disruption. CONCLUSIONS: This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Disease Models, Animal , Glioblastoma/pathology , Tumor Microenvironment , Animals , Brain/blood supply , Brain Neoplasms/complications , Glioblastoma/complications , Glioblastoma/physiopathology , Gliosis/etiology , Humans , Immunocompetence , Macrophage Activation , Magnetic Resonance Imaging , Male , Mice , Microglia/physiology , Necrosis/etiology , Neovascularization, Pathologic/etiology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL