Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Pathol ; 261(2): 139-155, 2023 10.
Article in English | MEDLINE | ID: mdl-37555362

ABSTRACT

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Keratin-19/genetics , Keratin-19/metabolism , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Gene Expression , Pancreatic Neoplasms
2.
Cell Mol Life Sci ; 80(5): 131, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095391

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Epigenesis, Genetic , Chromatin , Genetic Predisposition to Disease , Neurodegenerative Diseases/genetics , Blood Cells/metabolism , Blood Cells/pathology
3.
Dev Biol ; 471: 106-118, 2021 03.
Article in English | MEDLINE | ID: mdl-33309949

ABSTRACT

Adult zebrafish are frequently described to be able to "completely" regenerate the heart. Yet, the extent to which cardiomyocytes lost to injury are replaced is unknown, since existing evidence for cardiomyocyte proliferation is indirect or non-quantitative. We established stereological methods to quantify the number of cardiomyocytes at several time-points post cryoinjury. Intriguingly, after cryoinjuries that killed about 1/3 of the ventricular cardiomyocytes, pre-injury cardiomyocyte numbers were restored already within 30 days. Yet, many hearts retained small residual scars, and a subset of cardiomyocytes bordering these fibrotic areas remained smaller, lacked differentiated sarcomeric structures, and displayed defective calcium signaling. Thus, a subset of regenerated cardiomyocytes failed to fully mature. While lineage-tracing experiments have shown that regenerating cardiomyocytes are derived from differentiated cardiomyocytes, technical limitations have previously made it impossible to test whether cardiomyocyte trans-differentiation contributes to regeneration of non-myocyte cell lineages. Using Cre responder lines that are expressed in all major cell types of the heart, we found no evidence for cardiomyocyte transdifferentiation into endothelial, epicardial, fibroblast or immune cell lineages. Overall, our results imply a refined answer to the question whether zebrafish can completely regenerate the heart: in response to cryoinjury, preinjury cardiomyocyte numbers are indeed completely regenerated by proliferation of lineage-restricted cardiomyocytes, while restoration of cardiomyocyte differentiation and function, as well as resorption of scar tissue, is less robustly achieved.


Subject(s)
Heart/physiology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Regeneration , Zebrafish/metabolism , Animals , Fibrosis , Myocardium/pathology , Myocytes, Cardiac/pathology
4.
J Cell Sci ; 133(3)2020 02 13.
Article in English | MEDLINE | ID: mdl-31964708

ABSTRACT

Owing to the local enrichment of factors that influence its dynamics and organization, the actin cytoskeleton displays different shapes and functions within the same cell. In yeast cells, post-Golgi vesicles ride on long actin cables to the bud tip. The proteins Boi1 and Boi2 (Boi1/2) participate in tethering and docking these vesicles to the plasma membrane. Here, we show in Saccharomyces cerevisiae that Boi1/2 also recruit nucleation and elongation factors to form actin filaments at sites of exocytosis. Disrupting the connection between Boi1/2 and the nucleation factor Bud6 impairs filament formation, reduces the directed movement of the vesicles to the tip and shortens the vesicles' tethering time at the cortex. Transplanting Boi1 from the bud tip to the peroxisomal membrane partially redirects the actin cytoskeleton and the vesicular flow towards the peroxisome, and creates an alternative, rudimentary vesicle-docking zone. We conclude that Boi1/2, through interactions with Bud6 and Bni1, induce the formation of a cortical actin structure that receives and aligns incoming vesicles before fusion with the membrane.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Actins/metabolism , Adaptor Proteins, Signal Transducing , Cell Polarity , Exocytosis , Microfilament Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
J Cell Sci ; 133(11)2020 06 11.
Article in English | MEDLINE | ID: mdl-32327559

ABSTRACT

Yeast cells select the position of their new bud at the beginning of each cell cycle. The recruitment of septins to this prospective bud site is one of the critical events in a complex assembly pathway that culminates in the outgrowth of a new daughter cell. During recruitment, septin rods follow the high concentration of Cdc42GTP that is generated by the focused localization of the Cdc42 guanine-nucleotide-exchange factor Cdc24. We show that, shortly before budding, Cdc24 not only activates Cdc42 but also transiently interacts with Cdc11, the septin subunit that caps both ends of the septin rods. Mutations in Cdc24 that reduce affinity to Cdc11 impair septin recruitment and decrease the stability of the polarity patch. The interaction between septins and Cdc24 thus reinforces bud assembly at sites where septin structures are formed. Once the septins polymerize to form the septin ring, Cdc24 is found at the cortex of the bud and directs further outgrowth from this position.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Feedback , Guanine Nucleotide Exchange Factors , Prospective Studies , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Septins/genetics , Septins/metabolism
6.
PLoS Biol ; 16(9): e2003389, 2018 09.
Article in English | MEDLINE | ID: mdl-30235201

ABSTRACT

Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase cell division control protein 42 (Cdc42). Here we demonstrate-using a comprehensive set of paired daughter cell analyses that include single-cell 3D confocal imaging, single-cell transplants, single-cell RNA-seq, and single-cell transposase-accessible chromatin sequencing (ATAC-seq)-that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells.


Subject(s)
Cell Division/genetics , Cellular Senescence/genetics , Epigenesis, Genetic , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Aging/metabolism , Animals , Asymmetric Cell Division/genetics , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Aggregation , Cell Lineage/drug effects , Cell Polarity/drug effects , Chromatin , Mice, Inbred C57BL , Transcriptome/genetics , Wnt-5a Protein/pharmacology , cdc42 GTP-Binding Protein/metabolism
7.
Blood ; 129(3): 319-323, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27827825

ABSTRACT

There is high interest in understanding the mechanisms that drive self-renewal of stem cells. HOXB4 is one of the few transcription factors that can amplify long-term repopulating hematopoietic stem cells in a controlled way. Here we show in mice that this characteristic of HOXB4 depends on a proline-rich sequence near the N terminus, which is unique among HOX genes and highly conserved in higher mammals. Deletion of this domain substantially enhanced the oncogenicity of HOXB4, inducing acute leukemia in mice. Conversely, insertion of the domain into Hoxa9 impaired leukemogenicity of this homeobox gene. These results indicate that proline-rich stretches attenuate the potential of stem cell active homeobox genes to acquire oncogenic properties.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells/physiology , Homeodomain Proteins/physiology , Leukemia/etiology , Transcription Factors/physiology , Acute Disease , Animals , Carcinogens , Homeodomain Proteins/genetics , Mice , Proline , Sequence Analysis, Protein , Transcription Factors/genetics
8.
Proc Natl Acad Sci U S A ; 107(39): 16946-51, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20833819

ABSTRACT

Recent data indicate that a variety of regulatory molecules active in embryonic development may also play a role in the regulation of early hematopoiesis. Here we report that the human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus xvent2 gene, is a unique regulatory hematopoietic gene that is aberrantly expressed in CD34(+) leukemic stem-cell candidates in human acute myeloid leukemia (AML). Quantitative RT-PCR documented expression of the gene in lineage positive hematopoietic subpopulations, with the highest expression in CD33(+) myeloid cells. Notably, expression levels of VENTX were negligible in normal CD34(+)/CD38(-) or CD34(+) human progenitor cells. In contrast to this, leukemic CD34(+)/CD38(-) cells from AML patients with translocation t(8,21) and normal karyotype displayed aberrantly high expression of VENTX. Gene expression and pathway analysis demonstrated that in normal CD34(+) cells enforced expression of VENTX initiates genes associated with myeloid development and down-regulates genes involved in early lymphoid development. Functional analyses confirmed that aberrant expression of VENTX in normal CD34(+) human progenitor cells perturbs normal hematopoietic development, promoting generation of myeloid cells and impairing generation of lymphoid cells in vitro and in vivo. Stable knockdown of VENTX expression inhibited the proliferation of human AML cell lines. Taken together, these data extend our insights into the function of embryonic mesodermal factors in human postnatal hematopoiesis and indicate a role for VENTX in normal and malignant myelopoiesis.


Subject(s)
Gene Expression Regulation, Leukemic , Homeodomain Proteins/biosynthesis , Leukemia, Myeloid, Acute/metabolism , Myeloid Cells/cytology , Myelopoiesis/genetics , Coculture Techniques , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Knockdown Techniques , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Myeloid Cells/metabolism
9.
Cell Mol Gastroenterol Hepatol ; 16(5): 783-807, 2023.
Article in English | MEDLINE | ID: mdl-37543088

ABSTRACT

BACKGROUND AND AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) is a multistep process intensively studied; however, precocious diagnosis and effective therapy still remain unsatisfactory. The role for Notch signaling in PDAC has been discussed controversially, as both cancer-promoting and cancer-antagonizing functions have been described. Thus, an improved understanding of the underlying molecular mechanisms is necessary. Here, we focused on RBPJ, the receiving transcription factor in the Notch pathway, examined its expression pattern in PDAC, and characterized its function in mouse models of pancreatic cancer development and in the regeneration process after acute pancreatitis. METHODS: Conditional transgenic mouse models were used for functional analysis of RBPJ in the adult pancreas, initiation of PDAC precursor lesions, and pancreatic regeneration. Pancreata and primary acinar cells were tested for acinar-to-ductal metaplasia together with immunohistology and comprehensive transcriptional profiling by RNA sequencing. RESULTS: We identified reduced RBPJ expression in a subset of human PDAC specimens. Ptf1α-CreERT-driven depletion of RBPJ in transgenic mice revealed that its function is dispensable for the homeostasis and maintenance of adult acinar cells. However, primary RBPJ-deficient acinar cells underwent acinar-to-ductal differentiation in ex vivo. Importantly, oncogenic KRAS expression in the context of RBPJ deficiency facilitated the development of pancreatic intraepithelial neoplasia lesions with massive fibrotic stroma formation. Interestingly, RNA-sequencing data revealed a transcriptional profile associated with the cytokine/chemokine and extracellular matrix changes. In addition, lack of RBPJ delays the course of acute pancreatitis and critically impairs it in the context of KRASG12D expression. CONCLUSIONS: Our findings imply that downregulation of RBPJ in PDAC patients derepresses Notch targets and promotes KRAS-mediated pancreatic acinar cells transformation and desmoplasia development.


Subject(s)
Carcinoma in Situ , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis , Animals , Humans , Mice , Acinar Cells/metabolism , Acute Disease , Carcinoma in Situ/metabolism , Carcinoma, Pancreatic Ductal/pathology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice, Transgenic , Pancreatic Neoplasms/pathology , Pancreatitis/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms
10.
Theranostics ; 13(6): 1949-1973, 2023.
Article in English | MEDLINE | ID: mdl-37064874

ABSTRACT

Rationale: Pancreatic lineage specification follows the formation of tripotent pancreatic progenitors (PPs). Current protocols rebuilding PPs in vitro have an endocrine lineage bias and are mostly based on PDX1/NKX6-1 coexpression neglecting other markers decisive for PP heterogeneity and lineage potential. However, true tripotent PPs are of utmost interest to study also exocrine disorders such as pancreatic cancer and to simultaneously generate all three pancreatic lineages from the same ancestor. Methods: Here, we performed a comprehensive compound testing to advance the generation of multipotent progenitors, which were further characterized for their trilineage potential in vitro and in vivo. The heterogeneity and cell-cell communication across the PP subpopulations were analyzed via single-cell transcriptomics. Results: We introduce a novel PP differentiation platform based on a comprehensive compound screening with an advanced design of experiments computing tool to reduce impurities and to increase Glycoprotein-2 expression and subsequent trilineage potential. Superior PP tripotency was proven in vitro by the generation of acinar, endocrine, and ductal cells as well as in vivo upon orthotopic transplantation revealing all three lineages at fetal maturation level. GP2 expression levels at PP stage ascribed varying pancreatic lineage potential. Intermediate and high GP2 levels were superior in generating endocrine and duct-like organoids (PDLO). FACS-based purification of the GP2high PPs allowed the generation of pancreatic acinar-like organoids (PALO) with proper morphology and expression of digestive enzymes. scRNA-seq confirmed multipotent identity, positioned the GP2/PDX1/NKX6-1high population next to human fetal tip and trunk progenitors and identified novel ligand-receptor (LR) interactions in distinct PP subpopulations. LR validation experiments licensed midkine and VEGF signaling to increase markers labelling the single cell clusters with high GP2 expression. Conclusion: In this study, we guide human pluripotent stem cells into multipotent pancreatic progenitors. This common precursor population, which has the ability to mature into acinar, ductal and functional ß-cells, serves as a basis for studying developmental processes and deciphering early cancer formation in a cell type-specific context. Using single-cell RNA sequencing and subsequent validation studies, we were able to dissect PP heterogeneity and specific cell-cell communication signals.


Subject(s)
Insulin-Secreting Cells , Pluripotent Stem Cells , Humans , Pancreas/metabolism , Cell Differentiation/physiology , Insulin-Secreting Cells/metabolism , Organoids
11.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: mdl-35487692

ABSTRACT

Upon aging, the function of the intestinal epithelium declines with a concomitant increase in aging-related diseases. ISCs play an important role in this process. It is known that ISC clonal dynamics follow a neutral drift model. However, it is not clear whether the drift model is still valid in aged ISCs. Tracking of clonal dynamics by clonal tracing revealed that aged crypts drift into monoclonality substantially faster than young ones. However, ISC tracing experiments, in vivo and ex vivo, implied a similar clonal expansion ability of both young and aged ISCs. Single-cell RNA sequencing for 1,920 high Lgr5 ISCs from young and aged mice revealed increased heterogeneity among subgroups of aged ISCs. Genes associated with cell adhesion were down-regulated in aged ISCs. ISCs of aged mice indeed show weaker adhesion to the matrix. Simulations applying a single cell-based model of the small intestinal crypt demonstrated an accelerated clonal drift at reduced adhesion strength, implying a central role for reduced adhesion for affecting clonal dynamics upon aging.


Subject(s)
Intestines , Stem Cells , Animals , Cells, Cultured , Ileum , Intestinal Mucosa/metabolism , Mice , Stem Cells/metabolism
12.
STAR Protoc ; 3(3): 101483, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35769923

ABSTRACT

Quantitative 3D imaging of organ-wide cellular and subcellular components is central for revealing and understanding complex interactions between stem cells and their microenvironment. Here, we present a gentle but fast whole-mount immunofluorescence staining protocol for 3D confocal microscopy (iFAST3D) that preserves the 3D structure of the entire tissue and that of subcellular structures with high fidelity. The iFAST3D protocol enables reproducible and high-resolution 3D imaging of stem cells and various niche components for many mouse organs and tissues. For complete details on the use and execution of this protocol, please refer to Saçma et al. (2019).


Subject(s)
Imaging, Three-Dimensional , Stem Cells , Animals , Imaging, Three-Dimensional/methods , Mice , Microscopy, Confocal/methods , Staining and Labeling
13.
Cell Rep ; 41(13): 111867, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577378

ABSTRACT

The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature. Both acute and prolonged Met/HGFR inhibition ameliorate neuronal survival and motor recovery. Early elevation of HGF itself in the cerebrospinal fluid of TBI patients suggests that this mechanism has translational value in human subjects. Our findings identify Met/HGFR as a modulator of early neuroinflammation in TBI with promising translational potential.


Subject(s)
Brain Injuries, Traumatic , Microglia , Humans , Mice , Animals , Disease Models, Animal , Mice, Inbred C57BL , Signal Transduction
14.
Front Immunol ; 12: 738204, 2021.
Article in English | MEDLINE | ID: mdl-34858399

ABSTRACT

The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.


Subject(s)
Aging/physiology , Bone Marrow/physiology , Hematopoietic Stem Cells/physiology , Stem Cell Niche/physiology , Animals , Deep Learning , Hematopoietic Stem Cell Transplantation , Humans , Mice , Single-Cell Analysis
15.
Exp Hematol ; 99: 32-43.e13, 2021 07.
Article in English | MEDLINE | ID: mdl-34126175

ABSTRACT

Histone methylases and demethylases regulate gene expression programs in hematopoiesis. The molecular function of the demethylase KDM6A in normal hematopoiesis and, in particular, for the hematopoietic stem and progenitor cell (HSPC) compartment remains only partially understood. Female but not male Kdm6a-/- HSPCs were functionally impaired in adoptive transfer experiments as well as upon proliferative stress induced by 5-fluorouracil. Loss of Kdm6a affected primarily early B cells and erythroid and myeloid progenitor cells with respect to both number and function. Global gene expression analyses revealed a shared altered gene signature in Kdm6a-/- pro-B and pre-B cells that is also present in HSPCs, supporting that altered B-cell differentiation in Kdm6a-/- animals is already initiated in HSPCs. Interestingly, loss of KDM6A did not affect the global level of methylation of H3K27, its presumed target, in hematopoietic cells. Our data indicate a critical role for KDM6A in the regulation of hematopoietic differentiation and differentiation-specific gene expression programs, with a prominent role in early B-cell differentiation that is likely independent of H3K27 methylation status.


Subject(s)
Cell Differentiation , Hematopoiesis , Histone Demethylases/metabolism , Histones/metabolism , Precursor Cells, B-Lymphoid/enzymology , Stress, Physiological , Animals , Histone Demethylases/genetics , Histones/genetics , Methylation , Mice , Mice, Knockout
16.
Stem Cell Reports ; 16(4): 708-716, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33798450

ABSTRACT

During X chromosome inactivation (XCI), the inactive X chromosome (Xi) is recruited to the nuclear lamina at the nuclear periphery. Beside X chromosome reactivation resulting in a highly penetrant aging-like hematopoietic malignancy, little is known about XCI in aged hematopoietic stem cells (HSCs). Here, we demonstrate that LaminA/C defines a distinct repressive nuclear compartment for XCI in young HSCs, and its reduction in aged HSCs correlates with an impairment in the overall control of XCI. Integrated omics analyses reveal higher variation in gene expression, global hypomethylation, and significantly increased chromatin accessibility on the X chromosome (Chr X) in aged HSCs. In summary, our data support the role of LaminA/C in the establishment of a special repressive compartment for XCI in HSCs, which is impaired upon aging.


Subject(s)
Cellular Senescence/genetics , Hematopoietic Stem Cells/metabolism , X Chromosome Inactivation/genetics , Animals , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing , Humans , Lamin Type A/metabolism , Mice, Inbred C57BL , Transposases/metabolism , X Chromosome/genetics
17.
EMBO Mol Med ; 13(7): e13131, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34125498

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which is still missing effective therapeutic strategies. Although manipulation of neuronal excitability has been tested in murine and human ALS models, it is still under debate whether neuronal activity might represent a valid target for efficient therapies. In this study, we exploited a combination of transcriptomics, proteomics, optogenetics and pharmacological approaches to investigate the activity-related pathological features of iPSC-derived C9orf72-mutant motoneurons (MN). We found that human ALSC9orf72 MN are characterized by accumulation of aberrant aggresomes, reduced expression of synaptic genes, loss of synaptic contacts and a dynamic "malactivation" of the transcription factor CREB. A similar phenotype was also found in TBK1-mutant MN and upon overexpression of poly(GA) aggregates in primary neurons, indicating a strong convergence of pathological phenotypes on synaptic dysregulation. Notably, these alterations, along with neuronal survival, could be rescued by treating ALS-related neurons with the K+ channel blockers Apamin and XE991, which, respectively, target the SK and the Kv7 channels. Thus, our study shows that restoring the activity-dependent transcriptional programme and synaptic composition exerts a neuroprotective effect on ALS disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Neuroprotective Agents , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Animals , Humans , Mice , Motor Neurons
18.
Life Sci Alliance ; 3(9)2020 09.
Article in English | MEDLINE | ID: mdl-32737079

ABSTRACT

Cdc42 organizes cellular polarity and directs the formation of cellular structures in many organisms. By locating Cdc24, the source of active Cdc42, to the growing front of the yeast cell, the scaffold protein Bem1, is instrumental in shaping the cellular gradient of Cdc42. This gradient instructs bud formation, bud growth, or cytokinesis through the actions of a diverse set of effector proteins. To address how Bem1 participates in these transformations, we systematically tracked its protein interactions during one cell cycle to define the ensemble of Bem1 interaction states for each cell cycle stage. Mutants of Bem1 that interact with only a discrete subset of the interaction partners allowed to assign specific functions to different interaction states and identified the determinants for their cellular distributions. The analysis characterizes Bem1 as a cell cycle-specific shuttle that distributes active Cdc42 from its source to its effectors. It further suggests that Bem1 might convert the PAKs Cla4 and Ste20 into their active conformations.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Saccharomyces cerevisiae Proteins/metabolism , cdc42 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/physiology , Amino Acid Sequence/genetics , Cell Cycle , Cell Cycle Proteins/chemistry , Cell Division , Cell Polarity , Guanine Nucleotide Exchange Factors/metabolism , Protein Binding/physiology , Protein Serine-Threonine Kinases/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomycetales/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/physiology , cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/genetics , cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/metabolism
19.
Nat Commun ; 11(1): 3194, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581241

ABSTRACT

Ph+ acute lymphoblastic leukemia (ALL) is characterized by the expression of an oncogenic fusion kinase termed BCR-ABL1. Here, we show that interleukin 7 receptor (IL7R) interacts with the chemokine receptor CXCR4 to recruit BCR-ABL1 and JAK kinases in close proximity. Treatment with BCR-ABL1 kinase inhibitors results in elevated expression of IL7R which enables the survival of transformed cells when IL7 was added together with the kinase inhibitors. Importantly, treatment with anti-IL7R antibodies prevents leukemia development in xenotransplantation models using patient-derived Ph+ ALL cells. Our results suggest that the association between IL7R and CXCR4 serves as molecular platform for BCR-ABL1-induced transformation and development of Ph+ ALL. Targeting this platform with anti-IL7R antibody eliminates Ph+ ALL cells including those with resistance to commonly used ABL1 kinase inhibitors. Thus, anti-IL7R antibodies may provide alternative treatment options for ALL in general and may suppress incurable drug-resistant leukemia forms.


Subject(s)
Fusion Proteins, bcr-abl/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, CXCR4/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Female , Forkhead Box Protein O1/metabolism , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interleukin-7/pharmacology , Interleukin-7 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-7 Receptor alpha Subunit/genetics , Mice , Mice, Mutant Strains , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, CXCR4/genetics , Signal Transduction/drug effects
20.
Nat Cell Biol ; 21(11): 1309-1320, 2019 11.
Article in English | MEDLINE | ID: mdl-31685996

ABSTRACT

With ageing, intrinsic haematopoietic stem cell (HSC) activity decreases, resulting in impaired tissue homeostasis, reduced engraftment following transplantation and increased susceptibility to diseases. However, whether ageing also affects the HSC niche, and thereby impairs its capacity to support HSC function, is still widely debated. Here, by using in-vivo long-term label-retention assays we demonstrate that aged label-retaining HSCs, which are, in old mice, the most quiescent HSC subpopulation with the highest regenerative capacity and cellular polarity, reside predominantly in perisinusoidal niches. Furthermore, we demonstrate that sinusoidal niches are uniquely preserved in shape, morphology and number on ageing. Finally, we show that myeloablative chemotherapy can selectively disrupt aged sinusoidal niches in the long term, which is linked to the lack of recovery of endothelial Jag2 at sinusoids. Overall, our data characterize the functional alterations of the aged HSC niche and unveil that perisinusoidal niches are uniquely preserved and thereby protect HSCs from ageing.


Subject(s)
Aging/genetics , Capillaries/metabolism , Hematopoietic Stem Cells/metabolism , Homeostasis/genetics , Stem Cell Niche/genetics , Aging/metabolism , Animals , Bone Marrow/drug effects , Bone Marrow/metabolism , Capillaries/cytology , Capillaries/drug effects , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Polarity/drug effects , Cell Tracking/methods , Doxycycline/pharmacology , Fluorouracil/pharmacology , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Histones/genetics , Histones/metabolism , Homeostasis/drug effects , Jagged-2 Protein/genetics , Jagged-2 Protein/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloablative Agonists/pharmacology , Stem Cell Niche/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL