Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Med Mol Morphol ; 57(2): 101-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386083

ABSTRACT

To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.


Subject(s)
Drug Resistance, Bacterial , Erythromycin , Staphylococcal Protein A , Staphylococcus aureus , Erythromycin/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcal Protein A/genetics , Staphylococcal Protein A/metabolism , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/ultrastructure , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Bacterial/drug effects
2.
Clin Oral Investig ; 23(2): 739-746, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29766378

ABSTRACT

OBJECTIVES: The biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymers, which mimic a biomembrane, reduce protein adsorption and bacterial adhesion and inhibit cell attachment. The aim of this study is to clarify whether MPC-polymer can suppress the bacterial adherence in oral cavity by a crossover design. We also investigated the number of Fusobacterium nucleatum, which is the key bacterium forming dental plaque, in clinical samples. MATERIALS AND METHODS: This study was a randomized, placebo-controlled, single-blind, crossover study, with two treatment periods separated by a 2-week washout period. We conducted clinical trial with 20 healthy subjects to evaluate the effect of 5% MPC-polymer mouthwash after 5 h on oral microflora. PBS was used as a control. The bacterial number in the gargling sample before and after intervention was counted by an electronic bacterial counter and a culture method. DNA amounts of total bacteria and F. nucleatum were examined by q-PCR. RESULTS: The numbers of total bacteria and oral streptcocci after 5 h of 5% MPC-polymer treatment significantly decreased, compared to the control group. Moreover, the DNA amounts of total bacteria and F. nucleatum significantly decreased by 5% MPC-polymer mouthwash. CONCLUSIONS: We suggest that MPC-polymer coating in the oral cavity may suppress the oral bacterial adherence. CLINICAL RELEVANCE: MPC-polymer can be a potent compound for the control of oral microflora to prevent oral infection.


Subject(s)
Bacterial Adhesion/drug effects , Dental Plaque/microbiology , Fusobacterium nucleatum/drug effects , Methacrylates/pharmacology , Mouthwashes/pharmacology , Phosphorylcholine/analogs & derivatives , Streptococcus mutans/drug effects , Adult , Bacterial Load , Cross-Over Studies , Female , Humans , Male , Phosphorylcholine/pharmacology , Polymerase Chain Reaction , Polymers , Single-Blind Method
3.
Int J Mol Sci ; 20(18)2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31540175

ABSTRACT

The oral cavity is suggested as the reservoir of bacterial infection, and the oral and pharyngeal biofilms formed by oral bacterial flora, which is comprised of over 700 microbial species, have been found to be associated with systemic conditions. Almost all oral microorganisms are non-pathogenic opportunistic commensals to maintain oral health condition and defend against pathogenic microorganisms. However, oral Streptococci, the first microorganisms to colonize oral surfaces and the dominant microorganisms in the human mouth, has recently gained attention as the pathogens of various systemic diseases, such as infective endocarditis, purulent infections, brain hemorrhage, intestinal inflammation, and autoimmune diseases, as well as bacteremia. As pathogenic factors from oral Streptococci, extracellular polymeric substances, toxins, proteins and nucleic acids as well as vesicles, which secrete these components outside of bacterial cells in biofilm, have been reported. Therefore, it is necessary to consider that the relevance of these pathogenic factors to systemic diseases and also vaccine candidates to protect infectious diseases caused by Streptococci. This review article focuses on the mechanistic links among pathogenic factors from oral Streptococci, inflammation, and systemic diseases to provide the current understanding of oral biofilm infections based on biofilm and widespread systemic diseases.


Subject(s)
Stomatitis/microbiology , Streptococcal Infections/microbiology , Streptococcus/physiology , Aged , Autoimmune Diseases/etiology , Autoimmunity , Bacterial Adhesion , Biofilms , Biomarkers , DNA-Binding Proteins/metabolism , Humans , Male , Stomatitis/diagnosis , Streptococcal Infections/diagnosis , Virulence , Virulence Factors
4.
Article in English | MEDLINE | ID: mdl-28438927

ABSTRACT

Bacteria attached to a surface are generally more tolerant to antibiotics than their planktonic counterparts, even without the formation of a biofilm. The mechanism of antibiotic tolerance in biofilm communities is multifactorial, and the genetic background underlying this antibiotic tolerance has not yet been fully elucidated. Using transposon mutagenesis, we isolated a mutant with reduced tolerance to biapenem (relative to that of the wild type) from adherent cells. Sequencing analysis revealed a mutation in the pslL gene, which is part of the polysaccharide biosynthesis operon. The Pseudomonas aeruginosa PAO1ΔpslBCD mutant demonstrated a 100-fold-lower survival rate during the exposure of planktonic and biofilm cells to biapenem; a similar phenotype was observed in a mouse infection model and in clinical strains. Transcriptional analysis of adherent cells revealed increased expression of both pslA and pelA, which are directly regulated by bis-(3',5')-cyclic dimeric GMP (c-di-GMP). Inactivation of wspF resulted in significantly increased tolerance to biapenem due to increased production of c-di-GMP. The loss of pslBCD in the ΔwspF mutant background abolished the biapenem-tolerant phenotype of the ΔwspF mutant, underscoring the importance of psl in biapenem tolerance. Overexpression of PA2133, which can catalyze the degradation of c-di-GMP, led to a significant reduction in biapenem tolerance in adherent cells, indicating that c-di-GMP is essential in mediating the tolerance effect. The effect of pslBCD on antibiotic tolerance was evident, with 50- and 200-fold-lower survival in the presence of ofloxacin and tobramycin, respectively. We speculate that the psl genes, which are activated by surface adherence through elevated intracellular c-di-GMP levels, confer tolerance to antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Biofilms/drug effects , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial/genetics , Ofloxacin/pharmacology , Operon/genetics , Pseudomonas aeruginosa/genetics
5.
J Antimicrob Chemother ; 72(8): 2230-2240, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28510695

ABSTRACT

Objectives: Antibiotic tolerance causes chronic, refractory and persistent infections. In order to advance the development of a new type of drug for the treatment of infectious diseases, we herein investigated the effects of a newly synthesized analogue of the Pseudomonas aeruginosa quorum-sensing autoinducer named AIA-1 ( a uto i nducer a nalogue) on antibiotic tolerance in P. aeruginosa . Methods: A P. aeruginosa luminescent strain derived from PAO1 was injected into neutropenic ICR mice and bioluminescence images were acquired for a period of time after treatments with antibiotics and AIA-1. In vitro susceptibility testing and killing assays for the planktonic and biofilm cells of PAO1 were performed using antibiotics and AIA-1. The expression of quorum-sensing-related genes was examined using real-time PCR. Results: In vivo and in vitro assays showed that AIA-1 alone did not exert any bactericidal effects and also did not affect the MICs of antibiotics. However, the combined use of AIA-1 and antibiotics exerted markedly stronger therapeutic effects against experimental infection than antibiotics alone. The presence of AIA-1 also enhanced the killing effects of antibiotics in planktonic and biofilm cells. Although AIA-1 did not inhibit the expression of lasB and rhlA genes, which are directly regulated by quorum sensing, it clearly suppressed expression of the rpoS gene. Conclusions: The new compound, AIA-1, did not alter the antibiotic susceptibility of P. aeruginosa by itself; however, its addition enhanced the antibacterial activity of antibiotics. AIA-1 did not inhibit quorum sensing, but reduced the antibiotic tolerance of P. aeruginosa by suppressing rpoS gene expression.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Tolerance , Pheromones/metabolism , Pseudomonas aeruginosa/drug effects , Animals , Mice, Inbred ICR , Microbial Sensitivity Tests , Microbial Viability/drug effects
6.
Bioorg Med Chem ; 25(14): 3883-3889, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28559057

ABSTRACT

Cyclic-di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that binds to an RNA receptor called riboswitch and regulates its downstream genes involving cell wall metabolism, ion transport, and spore germination. Therefore, the c-di-AMP riboswitch can be a novel target of antibiotics. In this study, we synthesized c-di-4'-thioAMP (1), which possesses a sulfur atom instead of an oxygen atom in the furanose ring, as a candidate of a bioisoster for natural c-di-AMP. The resulting 1 bound to the c-di-AMP riboswitch with a micromolar affinity (34.8µM), and the phosphodiesterase resistance of 1 was >12-times higher than that of c-di-AMP. Thus, 1 can be considered to be a stable ligand against a c-di-AMP riboswitch.


Subject(s)
Cyclic AMP/chemistry , Ligands , Riboswitch/physiology , Sulfur/chemistry , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cyclic AMP/chemical synthesis , Cyclic AMP/metabolism , Kinetics , Nucleic Acid Conformation
7.
J Infect Chemother ; 23(5): 271-277, 2017 May.
Article in English | MEDLINE | ID: mdl-28274550

ABSTRACT

BACKGROUND: Antibiotic tolerance has attracted worldwide attention, as it leads to chronic, refractory, and persistent infections that are difficult to control. Bacterial biofilms are well known to be more tolerant to antibiotics compared to planktonic bacteria. We previously revealed that adherent bacteria on a solid surface also exhibited tolerance to antibiotics before forming a biofilm. However, little is known about the mechanisms of antibiotic tolerance for adherent or biofilm cells. OBJECTIVES: We investigated the mechanisms of antibiotic tolerance in the biofilm life cycle using adherent and biofilm cells, and evaluated the possibility that common mechanisms operate at each stage. METHODS: We constructed transposon mutants of Pseudomonas aeruginosa PAO1 and screened for low-tolerant mutants with two different methods, using adherent cells and biofilm cells. RESULTS: Fourteen and nine mutants exhibiting low antibiotic tolerance were detected in the adherent cells and biofilm cells, and 14 and 7 candidate genes linked to this tolerance were identified by sequencing, respectively. Eight of the 14 genes related to the antibiotic tolerance of the adherent cells were involved in biofilm formation. Two of the seven genes related to the antibiotic tolerance of biofilm cells participated in the antibiotic tolerance of adherent cells. CONCLUSIONS: The antibiotic tolerance of adherent cells and biofilm formation appear to be under the same regulation mechanism to promote survival in the presence of antibiotics. Antibiotic tolerance shows a complex regulation mechanism at each stage of biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Humans , Microbial Sensitivity Tests/methods , Mutation/drug effects , Mutation/genetics , Pseudomonas Infections/microbiology
8.
Antimicrob Agents Chemother ; 60(10): 5752-64, 2016 10.
Article in English | MEDLINE | ID: mdl-27431228

ABSTRACT

The ability of Pseudomonas aeruginosa to rapidly modulate its response to antibiotic stress and persist in the presence of antibiotics is closely associated with the process of cell-to-cell signaling. The alternative sigma factor RpoN (σ(54)) is involved in the regulation of quorum sensing (QS) and plays an important role in the survival of stationary-phase cells in the presence of carbapenems. Here, we demonstrate that a ΔrpoN mutant grown in nutrient-rich medium has increased expression of pqsA, pqsH, and pqsR throughout growth, resulting in the increased production of the Pseudomonas quinolone signal (PQS). The link between pqsA and its role in carbapenem tolerance was studied using a ΔrpoN ΔpqsA mutant, in which the carbapenem-tolerant phenotype of the ΔrpoN mutant was abolished. In addition, we demonstrate that another mechanism leading to carbapenem tolerance in the ΔrpoN mutant is mediated through pqsE Exogenously supplied PQS abolished the biapenem-sensitive phenotype of the ΔrpoN ΔpqsA mutant, and overexpression of pqsE failed to alter the susceptibility of the ΔrpoN ΔpqsA mutant to biapenem. The mutations in the ΔrpoN ΔrhlR mutant and the ΔrpoN ΔpqsH mutant led to susceptibility to biapenem. Comparison of the changes in the expression of the genes involved in QS in wild-type PAO1 with their expression in the ΔrpoN mutant and the ΔrpoN mutant-derived strains demonstrated the regulatory effect of RpoN on the transcript levels of rhlR, vqsR, and rpoS The findings of this study demonstrate that RpoN negatively regulates the expression of PQS in nutrient-rich medium and provide evidence that RpoN interacts with pqsA, pqsE, pqsH, and rhlR in response to antibiotic stress.


Subject(s)
Bacterial Proteins/metabolism , Carbapenems/pharmacology , Pseudomonas aeruginosa/drug effects , Quinolones/metabolism , Quorum Sensing , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial , Microbial Sensitivity Tests , Mutation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism
9.
Biosci Biotechnol Biochem ; 80(6): 1205-13, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27023331

ABSTRACT

Houttuynia cordata (HC) has been commonly used as many traditional remedies in local areas of Japan. Although many pharmacological activities of HC have been reported, the mechanism underlying the effect of HC remains unknown. We conducted the interview survey in Japan to verify how HC was actually used. The interview survey revealed that HC poultice (HCP) prepared from smothering fresh leaves of HC was most frequently used for the treatment of purulent skin diseases including furuncle and carbuncle with high effectiveness. Ethanol extract of HCP (eHCP) showed anti-bacterial effects against methicillin-resistant Staphylococcus aureus (MRSA), and showed an anti-biofilm activity against MRSA. eHCP showed dose-dependent inhibition of S. aureus lipoteichoic acid (LTA)-induced interleukin-8 and CCL20 production in human keratinocyte without any cytotoxicity. These results suggest that HCP is effective for skin abscess and its underlying mechanism might be the complicated multiple activities for both bacteria and host cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Carbuncle/drug therapy , Furunculosis/drug therapy , Houttuynia/chemistry , Phytotherapy/statistics & numerical data , Plant Extracts/pharmacology , Staphylococcal Infections/drug therapy , Aged , Biofilms/drug effects , Biofilms/growth & development , Carbuncle/metabolism , Carbuncle/pathology , Cell Line, Transformed , Chemokine CCL20/biosynthesis , Chemokine CCL20/metabolism , Dose-Response Relationship, Drug , Ethanol , Female , Furunculosis/metabolism , Furunculosis/pathology , Humans , Interleukin-8/biosynthesis , Interleukin-8/metabolism , Japan , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/immunology , Lipopolysaccharides/pharmacology , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Middle Aged , Plant Leaves/chemistry , Staphylococcal Infections/metabolism , Staphylococcal Infections/pathology , Surveys and Questionnaires , Teichoic Acids/pharmacology
10.
Nucleic Acids Res ; 40(15): 7207-18, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22581773

ABSTRACT

Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) modulates the transition between planktonic and biofilm life styles. In response to c-di-GMP, the enhancer binding protein FleQ from Pseudomonas aeruginosa derepresses the expression of Pel exopolysaccharide genes required for biofilm formation when a second protein, FleN is present. A model is that binding of c-di-GMP to FleQ induces its dissociation from the pelA promoter allowing RNA polymerase to access this site. To test this, we analyzed pelA DNA footprinting patterns with various combinations of FleQ, FleN and c-di-GMP, coupled to in vivo promoter activities. FleQ binds to two sites called box 1 and 2. FleN binds to FleQ bound at these sites causing the intervening DNA to bend. Binding of c-di-GMP to FleQ relieves the DNA distortion but FleQ remains bound to the two sites. Analysis of wild type and mutated versions of pelA-lacZ transcriptional fusions suggests that FleQ represses gene expression from box 2 and activates gene expression in response to c-di-GMP from box 1. The role of c-di-GMP is thus to convert FleQ from a repressor to an activator. The mechanism of action of FleQ is distinct from that of other bacterial transcription factors that both activate and repress gene expression from a single promoter.


Subject(s)
Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Operon , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Repressor Proteins/metabolism , Trans-Activators/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Cyclic GMP/metabolism , DNA, Bacterial/metabolism , Pseudomonas aeruginosa/metabolism
11.
PLoS Pathog ; 7(1): e1001264, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21298031

ABSTRACT

Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Polysaccharides, Bacterial/metabolism , Pseudomonas aeruginosa/physiology , Alginates , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Bacterial Proteins/genetics , Extracellular Matrix/physiology , Gene Expression Regulation, Bacterial , Microbial Sensitivity Tests , Microbial Viability/drug effects , Polysaccharides, Bacterial/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Tobramycin/pharmacology
12.
J Prosthodont Res ; 67(3): 384-391, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-36288959

ABSTRACT

PURPOSE: We aimed to evaluate the effectiveness of photoreactive 2-methacryloyloxyethyl phosphorylcholine (MPC) in inhibiting Candida albicans biofilm formation on polymethyl methacrylate (PMMA) and assess its mechanism and need for re-application by evaluating its interaction with salivary mucin and durability during temperature changes. METHODS: PMMA discs were used as specimens. The MPC coating was applied using the spray and cure technique for the treatment groups, whereas no coating was applied to the control. The MPC treatment (MT) groups were further differentiated based on the number of thermal cycles involved (0, 1000, 2500, and 5000). The optical density was measured to assess mucin adsorption (MA). Contact angle (CA) was calculated to evaluate surface hydrophilicity. The presence of MPC components on the PMMA surface was assessed using X-ray photoelectron spectroscopy (XPS). C. albicans biofilms were evaluated qualitatively (scanning electron microscope images) and quantitatively (colony-forming units (CFUs)). Statistical analysis was conducted using two-way analysis of variance and Tukey's multiple comparison test. RESULTS: MA rate and CA increased significantly in the MT groups, which exhibited significantly fewer CFUs and thinner biofilms than those of the control group. Based on the XPS, MA, and CFU evaluations, the durability and efficacy of the MPC coating were considered stable up to 2500 thermal cycles. Additionally, a significant interaction was observed between mucin concentration and MPC efficacy. CONCLUSIONS: The photoreactive MPC coating, which was resistant to temperature changes for approximately 3 months, effectively prevented C. albicans biofilm formation by modifying surface hydrophilicity and increasing mucin adsorption.


Subject(s)
Acrylic Resins , Candida albicans , Acrylic Resins/chemistry , Polymers , Polymethyl Methacrylate/pharmacology , Polymethyl Methacrylate/chemistry , Surface Properties , Biofilms , Mucins
13.
Appl Environ Microbiol ; 78(15): 5060-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22582064

ABSTRACT

The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP in P. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsive cdrA promoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP in P. aeruginosa strains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment of P. aeruginosa with the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology of P. aeruginosa.


Subject(s)
Biofilms , Cyclic GMP/analysis , Fluorescence , Genes, Reporter/genetics , Pseudomonas aeruginosa/chemistry , Adhesins, Bacterial/genetics , Green Fluorescent Proteins/genetics , Plasmids/genetics , Promoter Regions, Genetic/genetics
14.
Antibiotics (Basel) ; 11(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35740179

ABSTRACT

Pseudomonas aeruginosa infection is considered a high-risk nosocomial infection and is very difficult to eradicate because of its tolerance to antibiotic treatment. A new compound, autoinducer analog-1 (AIA-1), has been demonstrated to reduce antibiotic tolerance, but its mechanisms remain unknown. This study aimed to investigate the mechanisms of AIA-1 in the antibiotic tolerance of P. aeruginosa. A transposon mutant library was constructed using miniTn5pro, and screening was performed to isolate high tolerant mutants upon exposure to biapenem and AIA-1. We constructed a deletion mutant and complementation strain of the genes detected in transposon insertion site determination, pruR and PA0066-65-64, and performed killing assays with antibiotics and AIA-1. Gene expression upon exposure to biapenem and AIA-1 and their relationship to stress response genes were analyzed. High antibiotic tolerance was observed in Tn5-pruR and Tn5-PA0065 transposon mutants and their deletion mutants, ΔpruR and ΔPA0066-65-64. Complemented strains of pruR and PA0066-65-64 with their respective deletion mutants exhibited suppressed antibiotic tolerance. It was determined that deletion of PA0066-65-64 increased rpoS expression, and PA0066-65-64 affects antibiotic tolerance via the rpoS pathway. Additionally, antibiotics and AIA-1 were found to inhibit pruR and PA0066-65-64. This study proposed that pruR and PA0066-65-64 are members of the antibiotic tolerance suppressors.

15.
Biomed Res Int ; 2022: 9770899, 2022.
Article in English | MEDLINE | ID: mdl-35028318

ABSTRACT

Periodontitis is a chronic inflammatory disease caused by periodontopathogenic bacteria that form biofilms in periodontal pockets. The gingival epithelium acts as the first physical barrier in fighting attacks by periodontopathogenic pathogens, such as the primary etiological agent Porphyromonas gingivalis, and various exogenous chemicals, as well as regulates the local innate immune responses. Therefore, the development of novel oral care products to inhibit inflammatory reactions caused by bacterial infection and protect the gingival epithelium is necessary. Juncus effusus L. has generally been used as an indigenous medicine, such as a diuretic, an antipyretic, and an analgesic, in ancient practice. In this study, we examined the effects of a water extract from J. effusus L. on the inhibition of the inflammatory reaction elicited by bacterial infection and protection of the oral epithelium by chemical irritation. Pretreatment of oral epithelial cells with the water extract from J. effusus L. significantly reduced P. gingivalis or its lipopolysaccharide- (LPS-) mediated production of chemokines (interleukin-8 and C-C-chemokine ligand20) in a concentration-dependent manner with comparable to or greater effects than epigallocatechin gallate and protected oral epithelial cells from injury by chemical irritants, cetylpyridinium chloride, and benzethonium chloride. Moreover, the water extract from J. effusus L. in the presence of antimicrobial agents or antifibrinolytics already used as ingredients in mouthwash could significantly reduce the production of chemokines from P. gingivalis LPS-stimulated oral epithelial cells in a concentration-dependent manner. These findings suggest that the water extract from J. effusus L. is potentially useful for oral care to prevent oral infections, such as periodontal infections, and maintain oral epithelial function.


Subject(s)
Anti-Inflammatory Agents , Keratinocytes/metabolism , Magnoliopsida/chemistry , Mouth Mucosa/metabolism , Plant Extracts , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/prevention & control , Cell Line, Transformed , Humans , Keratinocytes/pathology , Mouth Mucosa/pathology , Periodontitis/metabolism , Periodontitis/pathology , Periodontitis/prevention & control , Plant Extracts/chemistry , Plant Extracts/pharmacology , Porphyromonas gingivalis/metabolism
16.
Biomedicines ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36289904

ABSTRACT

Porphyromonas gingivalis (Pg) is a keystone pathogen associated with chronic periodontitis and produces outer membrane vesicles (OMVs) that contain lipopolysaccharide (LPS), gingipains, and pathogen-derived DNA and RNA. Pg-OMVs are involved in the pathogenesis of periodontitis. Pg-OMV-activated pathways that induce the production of the pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in the human gingival epithelial cell line, OBA-9, were investigated. The role of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in levels of Pg-OMV-induced pro-inflammatory cytokines was investigated using Western blot analysis and specific pathway inhibitors. Pg-OMVs induced IL-6 and IL-8 production via the extracellular signal-regulated kinase (Erk) 1/2, c-Jun N-terminal kinase (JNK), p38 MAPK, and NF-κB signaling pathways in OBA-9 cells. In addition, the stimulator of interferon genes (STING), an essential innate immune signaling molecule, was triggered by a cytosolic pathogen DNA. Pg-OMV-induced IL-6 and IL-8 mRNA expression and production were significantly suppressed by STING-specific small interfering RNA. Taken together, these results demonstrated that Pg-OMV-activated Erk1/2, JNK, p38 MAPK, STING, and NF-κB signaling pathways resulting in increased IL-6 and IL-8 expression in human gingival epithelial cells. These results suggest that Pg-OMVs may play important roles in periodontitis exacerbation by stimulating various pathways.

17.
Antibiotics (Basel) ; 11(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36009989

ABSTRACT

Antibiotic-resistant bacteria remain a serious public health threat. In order to determine the percentage of antibiotic-resistant and -tolerant Pseudomonas aeruginosa cells present and to provide a more detailed infection risk of bacteria present in the environment, an isolation method using a combination of 41 °C culture and specific primers was established to evaluate P. aeruginosa in the environment. The 50 strains were randomly selected among 110 isolated from the river. The results of antibiotic susceptibility evaluation showed that only 4% of environmental strains were classified as antibiotic-resistant, while 35.7% of clinical strains isolated in the same area were antibiotic-resistant, indicating a clear difference between environmental and clinical strains. However, the percentage of antibiotic-tolerance, an indicator of potential resistance risk for strains that have not become resistant, was 78.8% for clinical strains and 90% for environmental strains, suggesting that P. aeruginosa, a known cause of nosocomial infections, has a high rate of antibiotic-tolerance even in environmentally derived strains. It suggested that the rate of antibiotic-tolerance is not elicited by the presence or absence of antimicrobial exposure. The combination of established isolation and risk analysis methods presented in this study should provide accurate and efficient information on the risk level of P. aeruginosa in various regions and samples.

18.
Mol Microbiol ; 75(4): 827-42, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20088866

ABSTRACT

Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a beta-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix.


Subject(s)
Adhesins, Bacterial/metabolism , Biofilms , Pseudomonas aeruginosa/pathogenicity , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Humans , Mutation , Operon , Polysaccharides, Bacterial/metabolism , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology
19.
Biochem Biophys Res Commun ; 404(1): 57-61, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21094139

ABSTRACT

Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca(2+)]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca(2+)]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.


Subject(s)
Bacteriocins/metabolism , Bile Ducts, Intrahepatic/metabolism , Calcineurin/metabolism , Calcium/metabolism , Early Growth Response Protein 1/biosynthesis , NFATC Transcription Factors/metabolism , Bacteriocins/pharmacology , Bile Ducts, Intrahepatic/drug effects , Cell Line, Tumor , Cell Nucleus/metabolism , Humans
20.
Antibiotics (Basel) ; 11(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35052885

ABSTRACT

Macrolide antibiotics are used in treating Pseudomonas aeruginosa chronic biofilm infections despite their unsatisfactory antibacterial activity, because they display several special activities, such as modulation of the bacterial quorum sensing and immunomodulatory effects on the host. In this study, we investigated the effects of the newly synthesized P. aeruginosa quorum-sensing autoinducer analogs (AIA-1, -2) on the activity of azithromycin and clarithromycin against P. aeruginosa. In the killing assay of planktonic cells, AIA-1 and -2 enhanced the bactericidal ability of macrolides against P. aeruginosa PAO1; however, they did not affect the minimum inhibitory concentrations of macrolides. In addition, AIA-1 and -2 considerably improved the killing activity of azithromycin and clarithromycin in biofilm cells. The results indicated that AIA-1 and -2 could affect antibiotic tolerance. Moreover, the results of hydrocarbon adherence and cell membrane permeability assays suggested that AIA-1 and -2 changed bacterial cell surface hydrophobicity and accelerated the outer membrane permeability of the hydrophobic antibiotics such as azithromycin and clarithromycin. Our study demonstrated that the new combination therapy of macrolides and AIA-1 and -2 may improve the therapeutic efficacy of macrolides in the treatment of chronic P. aeruginosa biofilm infections.

SELECTION OF CITATIONS
SEARCH DETAIL