Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Faraday Discuss ; 248(0): 190-209, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37800181

ABSTRACT

The rechargeable lithium air (oxygen) battery (Li-O2) has very high energy density, comparable to that of fossil fuels (∼3600 W h kg-1). However, the parasitic reactions of the O2 reduction products with solvent and electrolyte lead to capacity fading and poor cyclability. During the oxygen reduction reaction (ORR) in aprotic solvents, the superoxide radical anion (O2˙-) is the main one-electron reaction product, which in the presence of Li+ ions undergoes disproportionation to yield Li2O2 and O2, a fraction of which results in singlet oxygen (1O2). The very reactive 1O2 is responsible for the spurious reactions that lead to high charging overpotential and short cycle life due to solvent and electrolyte degradation. Several techniques have been used for the detection and suppression of 1O2 inside a Li-O2 battery under operation and to test the efficiency and electrochemical stability of different physical quenchers of 1O2: azide anions, 1,4-diazabicyclo[2.2.2]octane (DABCO) and triphenylamine (TPA) in different solvents (dimethyl sulfoxide (DMSO), diglyme and tetraglyme). Operando detection of 1O2 inside the battery was accomplished by following dimethylanthracene fluorescence quenching using a bifurcated optical fiber in front-face mode through a quartz window in the battery. Differential oxygen-pressure measurements during charge-discharge cycles vs. charge during battery operation showed that the number of electrons per oxygen molecule was n > 2 in the absence of physical quenchers of 1O2, due to spurious reactions, and n = 2 in the presence of physical quenchers of 1O2, proving the suppression of spurious reactions. Battery cycling at a limited specific capacity of 500 mA h gC-1 for the MWCNT cathode and 250 mA gC-1 current density, in the absence and presence of a physical quencher or a physical quencher plus the redox mediator I3-/I- (with a lithiated Nafion® membrane), showed increasing cyclability according to coulombic efficiency and cell voltage data over 100 cycles. Operando Raman studies with a quartz window at the bottom of the battery allowed detection of Li2O2 and excess I3- redox mediator during discharge and charge, respectively.

2.
Inorg Chem ; 62(29): 11304-11317, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37439562

ABSTRACT

The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by sulfide species (H2S/HS-) under an argon atmosphere has been studied by a combination of spectroscopic, kinetic, and computational methods. Asymmetric S-shaped time-traces for the formation of MbFeII at varying ratios of excess sulfide were observed at pH 5.3 < pH < 8.0 and 25 °C, suggesting an autocatalytic reaction mechanism. An increased rate at more alkaline pHs points to HS- as relevant reactive species for the reduction. The formation of the sulfanyl radical (HS•) in the slow initial phase was assessed using the spin-trap phenyl N-tert-butyl nitrone. This radical initiates the formation of S-S reactive species as disulfanuidyl/ disulfanudi-idyl radical anions and disulfide (HSSH•-/HSS•2- and HSS-, respectively). The autocatalysis has been ascribed to HSS-, formed after HSSH•-/HSS•2- disproportionation, which behaves as a fast reductant toward the intermediate complex MbFeIII(HS-). We propose a reaction mechanism for the sulfide-mediated reduction of metmyoglobin where only ferric heme iron initiates the oxidation of sulfide species. Beside the chemical interest, this insight into the MbFeIII/sulfide reaction under an argon atmosphere is relevant for the interpretation of biochemical aspects of ectopic myoglobins found on hypoxic tissues toward reactive sulfur species.


Subject(s)
Hydrogen Sulfide , Metmyoglobin , Metmyoglobin/chemistry , Anaerobiosis , Argon , Myoglobin/chemistry , Oxidation-Reduction , Sulfides , Kinetics
3.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34830413

ABSTRACT

This work introduces a novel way to obtain catalytically competent oxyferryl species for two different dye-decolorizing peroxidases (DyPs) in the absence of H2O2 or any other peroxide by simply applying a reductive electrochemical potential under aerobic conditions. UV-vis and resonance Raman spectroscopies show that this method yields long-lived compounds II and I for the DyPs from Bacillus subtilis (BsDyP; Class I) and Pseudomonas putida (PpDyP; Class P), respectively. Both electrochemically generated high valent intermediates are able to oxidize ABTS at both acidic and alkaline pH. Interestingly, the electrocatalytic efficiencies obtained at pH 7.6 are very similar to the values recorded for regular catalytic ABTS/H2O2 assays at the optimal pH of the enzymes, ca. 3.7. These findings pave the way for the design of DyP-based electrocatalytic reactors operable in an extended pH range without the need of harmful reagents such as H2O2.


Subject(s)
Coloring Agents/chemistry , Peroxidases/chemistry , Peroxides/chemistry , Bacillus subtilis/chemistry , Catalysis/drug effects , Coloring Agents/pharmacology , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction/drug effects , Pseudomonas putida/chemistry , Spectrum Analysis, Raman
4.
Arch Biochem Biophys ; 680: 108243, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31899145

ABSTRACT

Cytochrome c is a prototypical multifunctional protein that is implicated in a variety of processes that are essential both for sustaining and for terminating cellular life. Typically, alternative functions other than canonical electron transport in the respiratory chain are associated to alternative conformations. In this work we apply a combined experimental and computational study of Cyt c variants to assess whether the parameters that regulate the canonical electron transport function of Cyt c are correlated with those that determine the transition to alternative conformations, using the alkaline transition as a model conformational change. The results show that pKa values of the alkaline transition correlate with the activation energies of the frictionally-controlled electron transfer reaction, and that both parameters are mainly modulated by the flexibility of the Ω-loop 70-85. Reduction potentials and non-adiabatic ET reorganization energies, on the other hand, are both modulated by the flexibilities of the Ω-loops 40-57 and 70-85. Finally, all the measured thermodynamic and kinetic parameters that characterize both types of processes exhibit systematic variations with the dynamics of the hydrogen bond between the axial ligand Met80 and the second sphere ligand Tyr67, thus highlighting the critical role of Tyr67 in controlling canonical and alternative functions of Cyt c.


Subject(s)
Cytochromes c/chemistry , Animals , Electron Transport , Horses , Hydrogen Bonding , Kinetics , Oxidation-Reduction , Protein Conformation , Thermodynamics
5.
Soft Matter ; 16(30): 7040-7051, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32667028

ABSTRACT

Liquid-polymer contact electrification between sliding water drops and the surface of polytetrafluoroethylene (PTFE) was studied as a function of the pH and ionic strength of the drop as well as ambient relative humidity (RH). The PTFE surface was characterized by using SEM, water-contact-angle measurements, FTIR spectroscopy, XPS, and Raman spectroscopy. The charge acquired by the drops was calculated by detecting the transient voltage induced on a specifically designed capacitive sensor. It is shown that water drops become positively charged at pH > pHzch (pHzch being the zero charge point of the polymer) while they become negatively charged for pH < pHzch. The addition of non-hydrolysable salts (NaCl or CaCl2) to water decreases the electrical charge induced in the drop. The charge also decreases with increasing RH. These results suggest proton or hydroxyl transfer from the liquid to the hydrophobic polymer surface. A proposed thermodynamic model for the ion transfer process allows explaining the observed effects of RH, pH and ionic strength.

6.
J Am Chem Soc ; 141(3): 1373-1381, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30582893

ABSTRACT

CuA is a binuclear copper site acting as electron entry port in terminal heme-copper oxidases. In the oxidized form, CuA is a mixed valence pair whose electronic structure can be described using a potential energy surface with two minima, σu* and πu, that are variably populated at room temperature. We report that mutations in the first and second coordination spheres of the binuclear metallocofactor can be combined in an additive manner to tune the energy gap and, thus, the relative populations of the two lowest-lying states. A series of designed mutants span σu*/πu energy gaps ranging from 900 to 13 cm-1. The smallest gap corresponds to a variant with an effectively degenerate ground state. All engineered sites preserve the mixed-valence character of this metal center and the electron transfer functionality. An increase of the Cu-Cu distance less than 0.06 Å modifies the σu*/πu energy gap by almost 2 orders of magnitude, with longer distances eliciting a larger population of the πu state. This scenario offers a stark contrast to synthetic systems, as model compounds require a lengthening of 0.5 Å in the Cu-Cu distance to stabilize the πu state. These findings show that the tight control of the protein environment allows drastic perturbations in the electronic structure of CuA sites with minor geometric changes.


Subject(s)
Bacterial Proteins/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Cytochrome b Group/chemistry , Electron Transport Complex IV/chemistry , Amino Acid Sequence , Amino Acid Substitution , Bacterial Proteins/genetics , Cytochrome b Group/genetics , Electron Transport Complex IV/genetics , Electrons , Molecular Structure , Protein Engineering , Protein Subunits/chemistry , Sequence Alignment , Thermodynamics , Thermus thermophilus/enzymology
7.
Arch Biochem Biophys ; 665: 96-106, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30817907

ABSTRACT

Here we investigated the effect of electrostatic interactions and of protein tyrosine nitration of mammalian cytochrome c on the dynamics of the so-called alkaline transition, a pH- and redox-triggered conformational change that implies replacement of the axial ligand Met80 by a Lys residue. Using a combination of electrochemical, time-resolved SERR spectroelectrochemical experiments and molecular dynamics simulations we showed that in all cases the reaction can be described in terms of a two steps minimal reaction mechanism consisting of deprotonation of a triggering group followed by ligand exchange. The pKaalk values of the transition are strongly modulated by these perturbations, with a drastic downshift upon nitration and an important upshift upon establishing electrostatic interactions with a negatively charged model surface. The value of pKaalk is determined by the interplay between the acidity of a triggering group and the kinetic constants for the forward and backward ligand exchange processes. Nitration of Tyr74 results in a change of the triggering group from Lys73 in WT Cyt to Tyr74 in the nitrated protein, which dominates the pKaalk downshift towards physiological values. Electrostatic interactions, on the other hand, result in strong acceleration of the backward ligand exchange reaction, which dominates the pKaalk upshift. The different physicochemical conditions found here to influence pKaalk are expected to vary depending on cellular conditions and subcellular localization of the protein, thus determining the existence of alternative conformations of Cyt in vivo.


Subject(s)
Alkalies/chemistry , Cytochromes c/metabolism , Nitrates/metabolism , Static Electricity , Tyrosine/metabolism , Animals , Horses , Hydrogen-Ion Concentration , Ligands , Molecular Dynamics Simulation , Oxidation-Reduction
8.
Inorg Chem ; 58(3): 2149-2157, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30644741

ABSTRACT

Here we report the spectroscopic and electrochemical characterization of three novel chimeric CuA proteins in which either one or the three loops surrounding the metal ions in the Thermus thermophilus protein have been replaced by homologous human and plant sequences while preserving the set of coordinating amino acids. These conservative modifications mimic basic differences between CuA sites from different organisms and allow for fine tuning the energy gap between alternative electronic ground states of CuA.. This results in a systematic modulation of thermodynamic and kinetic electron transfer (ET) parameters and in the selection of one of two possible redox-active molecular orbitals, which differ in the ET reorganization energy by a factor of 2. Moreover, the ET mechanism is found to be frictionally controlled, and the modifications introduced into the different chimeras do not affect the frictional activation parameter.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Thermus thermophilus/metabolism , Copper/chemistry , Crystallography, X-Ray , Electrochemical Techniques , Electron Transport , Electron Transport Complex IV/chemistry , Kinetics , Models, Molecular , Thermodynamics , Thermus thermophilus/chemistry
9.
Inorg Chem ; 58(23): 15687-15691, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31710470

ABSTRACT

CuA centers perform efficient long-range electron transfer. The electronic structure of native CuA sites can be described by a double-potential well with a dominant σu* ground state in fast equilibrium with a less populated πu ground state. Here, we report a CuA mutant in which a lysine was introduced in the axial position. This results in a highly unstable protein with a pH-dependent population of the two ground states. Deep analysis of the high-pH form of this variant shows the stabilization of the πu ground state due to direct binding of the Lys residue to the copper center that we attribute to deprotonation of this residue.

10.
Chem Rev ; 117(21): 13382-13460, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29027792

ABSTRACT

Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.


Subject(s)
Cytochromes c/metabolism , Animals , Biosensing Techniques , Electron Transport , Humans , Kinetics , Mitochondria/enzymology , Oxidation-Reduction , Thermodynamics
11.
J Am Chem Soc ; 139(29): 9803-9806, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28662578

ABSTRACT

Manipulation of the partition function (Q) of the redox center CuA from cytochrome c oxidase is attained by tuning the accessibility of a low lying alternative electronic ground state and by perturbation of the electrostatic potential through point mutations, loop engineering and pH variation. We report clear correlations of the entropic and enthalpic contributions to redox potentials with Q and with the identity and hydrophobicity of the weak axial ligand, respectively.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Electrons , Thermodynamics , Copper/chemistry , Electron Transport Complex IV/chemistry , Entropy , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Ligands , Oxidation-Reduction , Static Electricity
12.
Phys Chem Chem Phys ; 19(13): 8908-8918, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28295106

ABSTRACT

Geobacter sulfurreducens cells have the ability to exchange electrons with conductive materials, and the periplasmic cytochrome PccH plays an essential role in the direct electrode-to-cell electron transfer in this bacterium. It has atypically low redox potential and unique structural features that differ from those observed in other c-type cytochromes. We report surface enhanced resonance Raman spectroscopic and electrochemical characterization of the immobilized PccH, together with molecular dynamics simulations that allow for the rationalization of experimental observations. Upon attachment to electrodes functionalized with partially or fully hydrophobic self-assembled monolayers, PccH displays a distribution of native and non-native heme spin configurations, similar to those observed in horse heart cytochrome c. The native structural and thermodynamic features of PccH are preserved upon attachment mixed hydrophobic (-CH3/-NH2) surfaces, while pure -OH, -NH2 and -COOH surfaces do not provide suitable platforms for its adsorption, indicating that its still unknown physiological redox partner might be membrane integrated. Neither of the employed immobilization strategies results in electrocatalytically active PccH capable of the reduction of hydrogen peroxide. Pseudoperoxidase activity is observed in immobilized microperoxidase, which is enzymatically produced from PccH and spectroscopically characterized. Further improvement of PccH microperoxidase stability is required for its application in electrochemical biosensing of hydrogen peroxide.


Subject(s)
Bacterial Proteins/metabolism , Cytochromes c/metabolism , Geobacter/metabolism , Peroxidases/metabolism , Spectrum Analysis, Raman , Adsorption , Electrodes , Electrons , Thermodynamics
13.
Biochemistry ; 55(3): 407-28, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26720007

ABSTRACT

Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.


Subject(s)
Cytochromes c/chemistry , Cytochromes c/metabolism , Animals , Cardiolipins/chemistry , Electricity , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Humans , Intracellular Space/metabolism , Phospholipids/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Conformation , Protein Folding , Protein Processing, Post-Translational , Protein Transport
14.
Biochemistry ; 54(51): 7491-504, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26620444

ABSTRACT

We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.


Subject(s)
Cardiolipins/chemistry , Cytochromes c/chemistry , Animals , Catalytic Domain , Horses , Protein Conformation , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
15.
Biochim Biophys Acta ; 1837(7): 1196-207, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24502917

ABSTRACT

In this overview we present recent combined electrochemical, spectroelectrochemical, spectroscopic and computational studies from our group on the electron transfer reactions of cytochrome c and of the primary electron acceptor of cytochrome c oxidase, the CuA site, in biomimetic complexes. Based on these results, we discuss how protein dynamics and thermal fluctuations may impact on protein ET reactions, comment on the possible physiological relevance of these results, and finally propose a regulatory mechanism that may operate in the Cyt/CcO electron transfer reaction in vivo. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Subject(s)
Cytochromes c/metabolism , Electron Transport Complex IV/chemistry , Amino Acid Sequence , Animals , Cytochromes c/chemistry , Electron Transport , Electron Transport Complex IV/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data
16.
Proc Natl Acad Sci U S A ; 109(43): 17348-53, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23054836

ABSTRACT

Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.


Subject(s)
Electron Transport , Thermus thermophilus/metabolism , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , X-Ray Absorption Spectroscopy
17.
Angew Chem Int Ed Engl ; 54(33): 9555-9, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26118421

ABSTRACT

The Cu(A) site of cytochrome c oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native Cu(A) shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of Cu(A) electron transfer in vivo. These findings may also prove useful for the development of molecular electronics.


Subject(s)
Copper/chemistry , Cytochrome b Group/chemistry , Electron Transport Complex IV/chemistry , Thermus thermophilus/enzymology , Electron Transport , Electrons , Oxidation-Reduction , Thermus thermophilus/chemistry
18.
Chemistry ; 20(41): 13366-74, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25171096

ABSTRACT

Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process.


Subject(s)
Electrolytes/chemistry , Glucose Oxidase/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Surface-Active Agents/chemistry , Biocatalysis , Electrodes , Electron Transport , Flavin-Adenine Dinucleotide/chemistry , Glucose/chemistry , Glucose/metabolism , Glucose Oxidase/metabolism , Osmium/chemistry , Oxidation-Reduction
20.
Angew Chem Int Ed Engl ; 53(24): 6188-92, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24777732

ABSTRACT

The Cu(A) center is a dinuclear copper site that serves as an optimized hub for long-range electron transfer in heme-copper terminal oxidases. Its electronic structure can be described in terms of a σ(u)* ground-state wavefunction with an alternative, less populated ground state of π(u) symmetry, which is thermally accessible. It is now shown that second-sphere mutations in the Cu(A) containing subunit of Thermus thermophilus ba3 oxidase perturb the electronic structure, which leads to a substantial increase in the population of the π(u) state, as shown by different spectroscopic methods. This perturbation does not affect the redox potential of the metal site, and despite an increase in the reorganization energy, it is not detrimental to the electron-transfer kinetics. The mutations were achieved by replacing the loops that are involved in protein-protein interactions with cytochrome c, suggesting that transient protein binding could also elicit ground-state switching in the oxidase, which enables alternative electron-transfer pathways.


Subject(s)
Copper/chemistry , Magnetic Resonance Spectroscopy/methods , Metalloproteins/chemistry , Electron Transport , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL