ABSTRACT
Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ). Exposure to fatty acids in the lymphoma environment potently suppressed NK cell effector response and cellular metabolism. NK cells from both diffuse large B-cell lymphoma patients and Eµ-myc B-cell lymphoma-bearing mice displayed reduced interferon-γ (IFN-γ) production. Activation of PPAR-γ partially restored mitochondrial membrane potential and IFN-γ production. Overall, our data indicate that increased lipid metabolism, while impairing their function, is a functional adaptation of NK cells to the fatty-acid rich lymphoma environment.
Subject(s)
Killer Cells, Natural/immunology , Lipid Metabolism/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Tumor Microenvironment/immunology , Animals , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/immunology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , PPAR gamma/genetics , PPAR gamma/immunology , Tumor Microenvironment/geneticsABSTRACT
BACKGROUND: Oxford Nanopore Technology (ONT) long-read sequencing has become a popular platform for microbial researchers due to the accessibility and affordability of its devices. However, easy and automated construction of high-quality bacterial genomes using nanopore reads remains challenging. Here we aimed to create a reproducible end-to-end bacterial genome assembly pipeline using ONT in combination with Illumina sequencing. RESULTS: We evaluated the performance of several popular tools used during genome reconstruction, including base-calling, filtering, assembly, and polishing. We also assessed overall genome accuracy using ONT both natively and with Illumina. All steps were validated using the high-quality complete reference genome for the Escherichia coli sequence type (ST)131 strain EC958. Software chosen at each stage were incorporated into our final pipeline, MicroPIPE. Further validation of MicroPIPE was carried out using 11 additional ST131 E. coli isolates, which demonstrated that complete circularised chromosomes and plasmids could be achieved without manual intervention. Twelve publicly available Gram-negative and Gram-positive bacterial genomes (with available raw ONT data and matched complete genomes) were also assembled using MicroPIPE. We found that revised basecalling and updated assembly of the majority of these genomes resulted in improved accuracy compared to the current publicly available complete genomes. CONCLUSIONS: MicroPIPE is built in modules using Singularity container images and the bioinformatics workflow manager Nextflow, allowing changes and adjustments to be made in response to future tool development. Overall, MicroPIPE provides an easy-access, end-to-end solution for attaining high-quality bacterial genomes. MicroPIPE is available at https://github.com/BeatsonLab-MicrobialGenomics/micropipe .
Subject(s)
Escherichia coli , Genome, Bacterial , Computational Biology , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , WorkflowABSTRACT
A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to the genetic etiology of complex disorders.
Subject(s)
Autism Spectrum Disorder/genetics , DNA, Intergenic/genetics , DNA/genetics , DNA, Intergenic/metabolism , Genetic Predisposition to Disease , Genetic Variation/genetics , Genome , Genome-Wide Association Study/methods , Humans , MicroRNAs/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Regulatory Elements, Transcriptional/geneticsABSTRACT
BACKGROUND: The last 10 years have seen the rise of countless functional genomics studies based on Next-Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While some tools have been proposed for investigating data quality after the mapping step, there is no commonly adopted framework that would be easy to use and broadly applicable to any NGS data type. RESULTS: We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS experiment data for any organism with available genomic annotations. In a single command line, ALFA can compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding, miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans. CONCLUSIONS: We show that ALFA provides a powerful and broadly applicable approach for post mapping quality control and to produce a global overview using common or dedicated annotations. It is made available to the community as an easy to install command line tool and from the Galaxy Tool Shed.
Subject(s)
Arabidopsis/genetics , Caenorhabditis elegans/genetics , Computational Biology/methods , Saccharomyces cerevisiae/genetics , Animals , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Humans , Mice , Molecular Sequence Annotation , Sequence Analysis, RNA , SoftwareABSTRACT
An emergent strategy for the transcriptome-wide study of protein-RNA interactions is CLIP-seq (crosslinking and immunoprecipitation followed by high-throughput sequencing). We combined CLIP-seq and mRNA-seq to identify direct RNA binding sites of eIF4AIII in human cells. This RNA helicase is a core constituant of the Exon Junction Complex (EJC), a multifunctional protein complex associated with spliced mRNAs in metazoans. Here, we describe the successive steps of the CLIP protocol and the computational tools and strategies we employed to map the physiological targets of eIF4AIII on human RNAs.
Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA Splicing/genetics , RNA-Binding Proteins/genetics , Binding Sites , Humans , Transcriptome/geneticsABSTRACT
Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
Subject(s)
Dinoflagellida , Phylogeny , Symbiosis , Dinoflagellida/genetics , Dinoflagellida/classification , Evolution, Molecular , Transcriptome , Genome, ProtozoanABSTRACT
The main carcinogen for keratinocyte skin cancers (KCs) such as basal and squamous cell carcinomas is ultraviolet (UV) radiation. There is growing evidence that accumulation of mutations and clonal expansion play a key role in KC development. The relationship between UV exposure, epidermal mutation load, and KCs remains unclear. Here, we examined the mutation load in both murine (n = 23) and human (n = 37) epidermal samples. Epidermal mutations accumulated in a UV dose-dependent manner, and this mutation load correlated with the KC burden. Epidermal ablation (either mechanical or laser induced), followed by spontaneous healing from underlying epithelial adnexae reduced the mutation load markedly in both mouse (n = 8) and human (n = 6) clinical trials. In a model of UV-induced basal cell carcinoma, epidermal ablation reduced incident lesions by >80% (n = 5). Overall, our findings suggest that mutation burden is strongly associated with KC burden and represents a target to prevent subsequent KCs.
Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Mice , Animals , Mutation Accumulation , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin/pathology , Epidermis/pathology , Carcinoma, Basal Cell/pathology , Ultraviolet Rays/adverse effects , MutationABSTRACT
Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.
Subject(s)
Fanconi Anemia , Leukemia , Humans , Mice , Animals , Fanconi Anemia/genetics , Clonal Hematopoiesis , Trisomy/genetics , Tumor Suppressor Protein p53/genetics , Leukemia/genetics , Chromosomes , Hematopoiesis/genetics , Proto-Oncogene Proteins/genetics , Cell Cycle Proteins/geneticsABSTRACT
Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.
ABSTRACT
Little is known regarding the molecular differences between basal cell carcinoma (BCC) subtypes, despite clearly distinct phenotypes and clinical outcomes. In particular, infiltrative BCCs have poorer clinical outcomes in terms of response to therapy and propensity for dissemination. In this project, we aimed to use exome sequencing and RNA sequencing to identify somatic mutations and molecular pathways leading to infiltrative BCCs. Using whole-exome sequencing of 36 BCC samples (eight infiltrative) combined with previously reported exome data (58 samples), we determine that infiltrative BCCs do not contain a distinct somatic variant profile and carry classical UV-induced mutational signatures. RNA sequencing on both datasets revealed key differentially expressed genes, such as POSTN and WISP1, suggesting increased integrin and Wnt signaling. Immunostaining for periostin and WISP1 clearly distinguished infiltrative BCCs, and nuclear ß-catenin staining patterns further validated the resulting increase in Wnt signaling in infiltrative BCCs. Of significant interest, in BCCs with mixed morphology, infiltrative areas expressed WISP1, whereas nodular areas did not, supporting a continuum between subtypes. In conclusion, infiltrative BCCs do not differ in their genomic alteration in terms of initiating mutations. They display a specific type of interaction with the extracellular matrix environment regulating Wnt signaling.
Subject(s)
Carcinoma, Basal Cell/genetics , Skin Neoplasms/genetics , Aged , CCN Intercellular Signaling Proteins/analysis , Carcinoma, Basal Cell/classification , Carcinoma, Basal Cell/pathology , Cell Adhesion Molecules/analysis , Female , Humans , Male , Mutation , Proto-Oncogene Proteins/analysis , Skin Neoplasms/classification , Skin Neoplasms/pathologyABSTRACT
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
ABSTRACT
Follicular lymphoma (FL) is the most common indolent non-Hodgkin lymphoma. Twenty to twenty-five percent of FL patients have progression of disease within 24 months. These patients may benefit from immunotherapy if intact antigen presentation is present. Molecular mechanisms impairing major histocompatibility complex class-I (MHC-I) in FL remain undefined. Here, by sequencing of 172 FL tumours, we found the MHC-I transactivator NLRC5 was the most frequent gene abnormality in the MHC-I pathway. Pyrosequencing showed that epigenetic silencing of the NLRC5 promoter occurred in 30% of cases and was mutually exclusive to copy number loss (CNL) in NLRC5 (â¼6% of cases). Hypermethylation and CNLs ("NLRC5 aberrant") had reduced NLRC5 gene expression compared to wild-type (WT) cases. By NanoString, there was reduced gene expression of the MHC-I pathway in aberrant tissues, including immunoproteasome components (PSMB8 and PSMB9), peptide transporters of antigen processing (TAP1), and MHC-I (HLA-A), compared to WT. By immunofluorescent microscopy, fewer NLRC5 protein-expressing malignant B-cells were observed in NLRC5 aberrant tissue sections compared to NLRC5 WT (P < .01). Consistent with a pivotal role in the activation of CD8+ T-cells, both CD8 and CD137 strongly correlated with NLRC5 expression (both r > 0.7; P < .0001). Further studies are required to determine whether patients with aberrant NLRC5 have a diminished response to immunotherapy.
ABSTRACT
To better understand the influence of ultraviolet (UV) irradiation on the initial steps of skin carcinogenesis, we examine patches of labeled keratinocytes as a proxy for clones in the interfollicular epidermis (IFE) and measure their size variation upon UVB irradiation. Multicolor lineage tracing reveals that in chronically irradiated skin, patches near hair follicles (HFs) increase in size, whereas those far from follicles do not change. This is explained by proliferation of basal epidermal cells within 60 µm of HF openings. Upon interruption of UVB, patch size near HFs regresses significantly. These anatomical differences in proliferative behavior have significant consequences for the cell of origin of basal cell carcinomas (BCCs). Indeed, a UV-inducible murine BCC model shows that BCC patches are more frequent, larger, and more invasive near HFs. These findings have major implications for the prevention of field cancerization in the epidermis.
Subject(s)
Epidermis/metabolism , Neoplasms, Radiation-Induced/pathology , Ultraviolet Rays , Animals , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/pathology , Cell Proliferation , Cyclin D1/metabolism , Disease Models, Animal , Epidermis/radiation effects , Hair Follicle/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms, Radiation-Induced/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Stem Cells/cytology , Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolismABSTRACT
BACKGROUND: Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. RESULTS: Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. CONCLUSIONS: The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.
Subject(s)
Genome, Bacterial , High-Throughput Nucleotide Sequencing , Genome, Plant , Sequence Analysis, DNA , SoftwareABSTRACT
To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53-/- lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2-/-p53-/- T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development.
Subject(s)
DNA Damage/genetics , DNA-Binding Proteins/metabolism , Genomic Instability/genetics , Lymphoma, T-Cell/genetics , T-Lymphocytes/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Amplification , Gene Expression Regulation, Neoplastic/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, T-Cell/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , RNA-Seq , T-Lymphocytes/pathology , Translocation, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolismABSTRACT
Tumor vascularization is a hallmark of cancer central to disease progression and metastasis. Current anti-angiogenic therapies have limited success prompting the need to better understand the cellular origin of tumor vessels. Using fate-mapping analysis of endothelial cell populations in melanoma, we report the very early infiltration of endovascular progenitors (EVP) in growing tumors. These cells harbored self-renewal and reactivated the expression of SOX18 transcription factor, initiating a vasculogenic process as single cells, progressing towards a transit amplifying stage and ultimately differentiating into more mature endothelial phenotypes that comprised arterial, venous and lymphatic subtypes within the core of the tumor. Molecular profiling by RNA sequencing of purified endothelial fractions characterized EVPs as quiescent progenitors remodeling the extracellular matrix with significant paracrine activity promoting growth. Functionally, EVPs did not rely on VEGF-A signaling whereas endothelial-specific loss of Rbpj depleted the population and strongly inhibited metastasis. The understanding of endothelial heterogeneity opens new avenues for more effective anti-vascular therapies in cancer.
Subject(s)
Cell Transformation, Neoplastic/pathology , Endothelial Progenitor Cells/pathology , Melanoma, Experimental/pathology , Neovascularization, Pathologic/pathology , SOXF Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Extracellular Matrix/pathology , Female , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Lymphatic Vessels/cytology , Lymphatic Vessels/pathology , Male , Melanoma, Experimental/blood supply , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Invasiveness/pathology , SOXF Transcription Factors/genetics , Vascular Endothelial Growth Factor A/metabolismABSTRACT
PURPOSE: Understanding the immunobiology of the 15% to 30% of patients with follicular lymphoma (FL) who experience progression of disease within 24 months (POD24) remains a priority. Solid tumors with low levels of intratumoral immune infiltration have inferior outcomes. It is unknown whether a similar relationship exists between POD24 in FL. PATIENTS AND METHODS: Digital gene expression using a custom code set-five immune effector, six immune checkpoint, one macrophage molecules-was applied to a discovery cohort of patients with early- and advanced-stage FL (n = 132). T-cell receptor repertoire analysis, flow cytometry, multispectral immunofluorescence, and next-generation sequencing were performed. The immune infiltration profile was validated in two independent cohorts of patients with advanced-stage FL requiring systemic treatment (n = 138, rituximab plus cyclophosphamide, vincristine, prednisone; n = 45, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone), with the latter selected to permit comparison of patients experiencing a POD24 event with those having no progression at 5 years or more. RESULTS: Immune molecules showed distinct clustering, characterized by either high or low expression regardless of categorization as an immune effector, immune checkpoint, or macrophage molecule. Low programmed death-ligand 2 (PD-L2) was the most sensitive/specific marker to segregate patients with adverse outcomes; therefore, PD-L2 expression was chosen to distinguish immune infiltrationHI (ie, high PD-L2) FL biopsies from immune infiltrationLO (ie, low PD-L2) tumors. Immune infiltrationHI tissues were highly infiltrated with macrophages and expanded populations of T-cell clones. Of note, the immune infiltrationLO subset of patients with FL was enriched for POD24 events (odds ratio [OR], 4.32; c-statistic, 0.81; P = .001), validated in the independent cohorts (rituximab plus cyclophosphamide, vincristine, prednisone: OR, 2.95; c-statistic, 0.75; P = .011; and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone: OR, 7.09; c-statistic, 0.88; P = .011). Mutations were equally proportioned across tissues, which indicated that degree of immune infiltration is capturing aspects of FL biology distinct from its mutational profile. CONCLUSION: Assessment of immune-infiltration by PD-L2 expression is a promising tool with which to help identify patients who are at risk for POD24.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Biomarkers, Tumor/analysis , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphoma, Follicular/drug therapy , Programmed Cell Death 1 Ligand 2 Protein/analysis , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/genetics , Databases, Factual , Disease Progression , Germany , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/immunology , Lymphoma, Follicular/mortality , North America , Programmed Cell Death 1 Ligand 2 Protein/genetics , Progression-Free Survival , Queensland , Risk Factors , Time Factors , TranscriptomeABSTRACT
Inflammatory bowel disease encompasses a group of chronic-inflammatory conditions of the colon and small intestine. These conditions are characterized by exacerbated inflammation of the organ that greatly affects the quality of life of patients. Molecular mechanisms counteracting this hyperinflammatory status of the gut offer strategies for therapeutic intervention. Among these regulatory molecules is the anti-inflammatory cytokine interleukin (IL)-10, as shown in mice and humans. Indeed, IL-10 signaling, particularly in macrophages, is essential for intestinal homeostasis. We sought to investigate the temporal profile of IL-10-mediated protection during chemical colitis and which were the underlying mechanisms. Using a novel mouse model of inducible IL-10 overexpression (pMT-10), described here, we show that mice preconditioned with IL-10 for 8 days before dextran sulfate sodium (DSS) administration developed a milder colitic phenotype. In IL-10-induced colitic mice, Ly6C cells isolated from the lamina propria showed a decreased inflammatory profile. Because our mouse model leads to transcription of the IL-10 transgene in the bone marrow and elevated seric IL-10 concentration, we investigated whether IL-10 could imprint immune cells in a long-lasting way, thus conferring sustained protection to colitis. We show that this was not the case, as IL-10-afforded protection was only observed if IL-10 induction immediately preceded DSS-mediated colitis. Thus, despite the protection afforded by IL-10 in colitis, novel strategies are required, specifically to achieve long-lasting protection.
Subject(s)
Colitis/immunology , Inflammatory Bowel Diseases/immunology , Interleukin-10/metabolism , Animals , Colitis/chemically induced , Dextran Sulfate , Disease Models, Animal , Female , Humans , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Interleukin-10/genetics , Signal Transduction , Transgenes/geneticsABSTRACT
XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2(c/c) mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2(c/c) XLF(-/-) p53(-/-) mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly.
Subject(s)
DNA Repair/physiology , DNA-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Animals , DNA Breaks , DNA-Binding Proteins/genetics , Genomic Instability , Lymphocytes/cytology , Lymphocytes/physiology , Lymphopenia/genetics , Mice , Mice, KnockoutABSTRACT
BACKGROUND: The exon junction complex (EJC) is a dynamic multi-protein complex deposited onto nuclear spliced mRNAs upstream of exon-exon junctions. The four core proteins, eIF4A3, Magoh, Y14 and MLN51, are stably bound to mRNAs during their lifecycle, serving as a binding platform for other nuclear and cytoplasmic proteins. Recent evidence has shown that the EJC is involved in the splicing regulation of some specific events in both Drosophila and mammalian cells. RESULTS: Here, we show that knockdown of EJC core proteins causes widespread alternative splicing changes in mammalian cells. These splicing changes are specific to EJC core proteins, as knockdown of eIF4A3, Y14 and MLN51 shows similar splicing changes, and are different from knockdown of other splicing factors. The splicing changes can be rescued by a siRNA-resistant form of eIF4A3, indicating an involvement of EJC core proteins in regulating alternative splicing. Finally, we find that the splicing changes are linked with RNA polymerase II elongation rates. CONCLUSION: Taken together, this study reveals that the coupling between EJC proteins and splicing is broader than previously suspected, and that a possible link exists between mRNP assembly and splice site recognition.