Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35388432

ABSTRACT

The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Biological Evolution , Female , Genomics , Lizards/genetics , Mammals/physiology , Placenta , Pregnancy , Viviparity, Nonmammalian/genetics
2.
Biol Reprod ; 105(6): 1381-1400, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34514493

ABSTRACT

There are many different forms of nutrient provision in viviparous (live-bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), to transfer waste from the fetus to the mother, and to perform respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and to propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells (UEC) and show that there are similarities in the changes to the cytoskeleton and gross morphology of the UEC, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control, and genetic underpinnings of pregnancy in marsupial taxa.


Subject(s)
Biological Evolution , Mammals/physiology , Placentation , Animals , Female , Pregnancy
3.
Exp Cell Res ; 386(2): 111727, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31759054

ABSTRACT

Following mating, leukocytes are recruited to the uterine epithelium where they phagocytose spermatozoa and mediate maternal immune tolerance as well as a mild inflammatory response. In this ultrastructural study we utilised array tomography, a high-resolution volume scanning electron microscopy approach to 3D reconstruct the cellular relationships formed by leukocytes recruited to the luminal uterine epithelium 12 h post-mating in the rat. We report that following mating, neutrophils and macrophages are internalised by the luminal uterine epithelium, with multiple leukocytes internalised via contortion through a small tunnel in the apical membrane into a large membrane-bound vacuole within the cytoplasm of luminal uterine epithelial cells (UECs). Once internalised within the UECs, recruited leukocytes appear to phagocytose material within the membrane-bound vacuole and most ultimately undergo a specialised cell death, including vacuolisation and loss of membrane integrity. As these observations involve ultrastructurally normal leukocytic cells internalised within non-phagocytic epithelial cells, these observations are consistent with the formation of cell-in-cell structures via entosis, rather than phagocytic engulfment by UECs. Although cell-in-cell structures have been reported in normal and pathological conditions elsewhere, the data collected herein represents the first evidence of the formation of cell-in-cell structures within the uterine epithelium as a novel component of the maternal inflammatory response to mating.


Subject(s)
Copulation/physiology , Entosis/immunology , Epithelial Cells/ultrastructure , Epithelium/ultrastructure , Leukocytes/ultrastructure , Uterus/cytology , Animals , Cell Death , Epithelial Cells/immunology , Epithelium/immunology , Female , Immune Tolerance , Leukocytes/immunology , Male , Phagocytosis , Pregnancy , Rats , Rats, Wistar , Spermatozoa/cytology , Spermatozoa/immunology , Uterus/immunology , Vacuoles/immunology , Vacuoles/ultrastructure
4.
J Anat ; 236(6): 1126-1136, 2020 06.
Article in English | MEDLINE | ID: mdl-32052440

ABSTRACT

Mammalian pregnancy involves remodelling of the uterine epithelium to enable placentation. In marsupials, such remodelling has probably played a key role in the transition from ancestral invasive placentation to non-invasive placentation. Identifying uterine alterations that are unique to marsupials with non-invasive placentation can thus elucidate mechanisms of marsupial placental evolution. We identified apical alterations to uterine epithelial cells prior to implantation in Monodelphis domestica, a member of the least derived living marsupial clade (Didelphidae) with invasive (endotheliochorial) placentation. We then compared these traits with those of Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae), both with non-invasive placentation, to identify which alterations to the uterine epithelium are ancestral and which facilitate secondarily evolved non-invasive placentation. In M. domestica, remodelling of the uterine epithelium involves reduced cellular heterogeneity and development of uterodome-like cells, suggesting that similar alterations may also have occurred in the marsupial common ancestor. These alterations also overlap with those of both T. vulpecula and Ma. eugenii, suggesting that the placental shift from invasive to non-invasive placentation in marsupials involves essential, conserved characteristics, irrespective of placental mode. However, unique apical alterations of both T. vulpecula and Ma. eugenii, relative to M. domestica, imply that lineage-specific alterations underpin the evolutionary shift to non-invasive placentation in marsupials.


Subject(s)
Epithelium/physiology , Placentation/physiology , Pregnancy, Animal/physiology , Uterus/physiology , Animals , Biological Evolution , Embryo Implantation/physiology , Female , Monodelphis , Pregnancy
5.
Reproduction ; 160(4): 533-546, 2020 10.
Article in English | MEDLINE | ID: mdl-32698156

ABSTRACT

Luminal uterine epithelial cells (UEC) have a surge in vesicular activity during early uterine receptivity. It has been predicted these vesicles exit the UEC via exocytosis resulting in secretion and membrane trafficking. The present study investigated the changes in SNARE proteins VAMP2 (v-SNARE) and syntaxin 3 (t-SNARE) localisation and abundance in UECs during early pregnancy in the rat. We found VAMP2 and syntaxin 3 are significantly higher on day 5.5 compared to day 1 of pregnancy. On day 5.5, VAMP2 is perinuclear and syntaxin 3 is concentrated in the apical cytoplasm compared to a cytoplasmic localisation on day 1. This change in localisation and abundance show VAMP2 and syntaxin 3 are involved in vesicular movement and membrane trafficking in UECs during early pregnancy. This study also investigated the influence of cytoskeletal disruption of microtubules and actin filaments on VAMP2 and syntaxin 3 in UECs grown in vitro, since microtubules and actin influence vesicle trafficking. As expected, this study found disruption to microtubules with colchicine and actin with cytochalasin D impacted VAMP2 and syntaxin 3 localisation. These results suggest VAMP2 and syntaxin 3 are involved in the timely trafficking of vesicular membranes to the apical surface in UECs during early pregnancy, as are of microtubules and actin.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Exocytosis , Qa-SNARE Proteins/metabolism , Uterus/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Actins/metabolism , Animals , Cell Movement , Cytoskeleton/metabolism , Epithelial Cells/cytology , Female , Pregnancy , Protein Transport , Rats , Rats, Wistar , Uterus/cytology
6.
Histochem Cell Biol ; 151(5): 395-406, 2019 May.
Article in English | MEDLINE | ID: mdl-30515554

ABSTRACT

During early pregnancy, the uterine luminal epithelial cells (UECs) and endometrial stromal cells (ESCs) undergo morphological changes to enable blastocyst implantation. The present study investigates, for the first time, the cytoskeletal-associated proteins and α-actinin superfamily members, α-parvin and ß-parvin, during early pregnancy in the rat uterus. These two PARVA proteins are involved in cell adhesion, morphological changes and regulation of other cytoskeletal proteins, through binding with proteins such as actin and integrin-linked kinase. α-parvin is present in UECs at fertilisation and significantly decreases by the time of implantation. ß-parvin acts in opposition; significantly increasing in both UECs and ESCs at the time of implantation, suggesting a role in the process of decidualisation. Additionally, the presence of a serine-8 residue-phosphorylated α-parvin, which is associated with cell morphology changes, was found in the nuclear region of both UECs and ESCs during implantation and decidualisation. We also show that the presence of both ß-parvin and phosphorylated α-parvin in ESCs is dependent on decidualisation occurring. This study demonstrates that the changing balance and localisation of the two PARVA proteins are dependent on the time of uterine receptivity, suggesting a co-dependent role in the cytoskeletal re-organisation crucial to the changing conditions necessary for implantation and decidualisation.


Subject(s)
Actinin/metabolism , Uterus/metabolism , Animals , Female , Male , Pregnancy , Rats , Rats, Wistar , Uterus/cytology
7.
Mol Reprod Dev ; 86(6): 639-649, 2019 06.
Article in English | MEDLINE | ID: mdl-30950142

ABSTRACT

The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin-1, -3, -4, and -5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin-1, -3, and -5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin-4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species-specific.


Subject(s)
Claudins/metabolism , Epithelial Cells/metabolism , Marsupialia/metabolism , Pregnancy/metabolism , Tight Junctions/metabolism , Uterus/metabolism , Animals , Female
8.
Reprod Fertil Dev ; 31(4): 633-644, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30449299

ABSTRACT

The uterine epithelium undergoes remodelling to become receptive to blastocyst implantation during pregnancy in a process known as the plasma membrane transformation. There are commonalities in ultrastructural changes to the epithelium, which, in eutherian, pregnancies are controlled by maternal hormones, progesterone and oestrogens. The aim of this study was to determine the effects that sex steroids have on the uterine epithelium in the fat-tailed dunnart Sminthopsis crassicaudata, the first such study in a marsupial. Females were exposed to exogenous hormones while they were reproductively quiescent, thus not producing physiological concentrations of ovarian hormones. We found that changes to the protein E-cadherin, which forms part of the adherens junction, are controlled by progesterone and that changes to the desmoglein-2 protein, which forms part of desmosomes, are controlled by 17ß-oestradiol. Exposure to a combination of progesterone and 17ß-oestradiol causes changes to the microvilli on the apical surface and to the ultrastructure of the uterine epithelium. There is a decrease in lateral adhesion when the uterus is exposed to progesterone and 17ß-oestradiol that mimics the hormone environment of uterine receptivity. We conclude that uterine receptivity and the plasma membrane transformation in marsupial and eutherian pregnancies are under the same endocrine control and may be an ancestral feature of therian mammals.


Subject(s)
Cell Membrane/drug effects , Estradiol/pharmacology , Progesterone/pharmacology , Uterus/drug effects , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Cell Membrane/metabolism , Epithelium/drug effects , Epithelium/metabolism , Female , Marsupialia , Microvilli/drug effects , Microvilli/metabolism , Uterus/metabolism
9.
J Exp Zool B Mol Dev Evol ; 330(3): 165-180, 2018 05.
Article in English | MEDLINE | ID: mdl-29656535

ABSTRACT

The evolution of viviparity requires eggshell thinning to bring together the maternal uterus and extraembryonic membranes to form placentae for physiological exchanges. Eggshell thinning likely involves reduced activity of the uterine glands that secrete it. We tested these hypotheses by comparing the uterine and eggshell structure and histochemistry among oviparous and viviparous water snakes (Helicops) using phylogenetic methods. Eggshell thinning occurred convergently in all three origins of viviparity in Helicops and was accomplished by the loss of the mineral layer and thinning of the shell membrane. Uterine glands secrete the shell membrane in both oviparous and viviparous Helicops. These glands increase during vitellogenesis regardless of the reproductive mode, but they always reach smaller sizes in viviparous forms. As there is no phylogenetic signal in eggshell thickness and gland dimensions, we conclude that interspecific differences are related to reproductive mode and not phylogeny. Therefore, our results support the hypothesis that eggshell thinning is associated with the evolution of viviparity and that such thinning result from a reduction in gland size in viviparous taxa. Interestingly, the shell membrane thickness of viviparous females of the reproductively bimodal Helicops angulatus is intermediate between their oviparous and viviparous congeners. Thus, although eggshell thinning is required by the evolution of viviparity, a nearly complete loss of this structure is not. However, uterine gland dimensions are similar across viviparous Helicops. Fewer glands or their functional repurposing may explain the thinner shell membrane in viviparous species of Helicops in comparison to viviparous females of the bimodal H. angulatus.


Subject(s)
Biological Evolution , Egg Shell/physiology , Snakes/physiology , Uterus/physiology , Viviparity, Nonmammalian/genetics , Viviparity, Nonmammalian/physiology , Animals , Embryo, Nonmammalian/physiology , Female , Snakes/classification
10.
Cell Tissue Res ; 374(3): 667-677, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30030603

ABSTRACT

For the development of uterine receptivity, many morphological and molecular changes occur in the apical surface of luminal uterine epithelial cells (UECs) including an increase in vesicular activity. Vesicular movements for exocytosis and endocytosis are dependent on microtubules; however, changes in microtubules in UECs during early pregnancy have received little attention. ß-tubulin, one of the main component of microtubules, is distributed throughout the cytoplasm of UECs on day 1 (non-receptive) of pregnancy in the rat. On day 5.5, ß-tubulin is concentrated above the nuclei and by day 6 (receptive), ß-tubulin is concentrated in a band-like fashion above the nucleus. Western blot analysis of isolated UECs found two bands (50 and 34 kDa) for ß-tubulin in UECs during early pregnancy. The intensity of the 34 kDa band was significantly higher on day 6 compared to day 1. The increase in the 34 kDa band may be due to higher proteolytic activity associated with microtubule polymerisation during the receptive state. Transmission electron microscopy showed fragmented microtubules at the time of receptivity in UECs. This is the first study to show that microtubules are reorganised during uterine receptivity. This re-organisation likely facilitates vesicular movement and promotes the reorganisation of the apical plasma membrane for uterine receptivity.


Subject(s)
Microtubules/metabolism , Uterus/metabolism , Animals , Cell Separation , Epithelial Cells/metabolism , Female , Microtubules/ultrastructure , Pregnancy , Rats, Wistar , Tubulin/metabolism , Uterus/cytology
11.
Mol Reprod Dev ; 85(1): 72-82, 2018 01.
Article in English | MEDLINE | ID: mdl-29243855

ABSTRACT

In mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non-invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra-uterine conflict between mother and embryo, species with non-invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non-invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups. Desmoglein-2, involved in maintaining lateral cell-cell adhesion of the uterine epithelium, is redistributed before implantation to facilitate embryo invasion in mammals with invasive placentation. We identified localization patterns of this cell adhesion molecule throughout pregnancy in two marsupial species with non-invasive placentation, the tammar wallaby (Macropus eugenii; Macropodidae), and the brushtail possum (Trichosurus vulpecula; Phalangeridae). Interestingly, Desmoglein-2 redistribution also occurs in both M. eugenii and T. vulpecula, suggesting that cell adhesion, and thus integrity of the uterine epithelium, is reduced during implantation regardless of placental type, and may be an important component of uterine remodeling. Desmoglein-2 also localizes to the mesenchymal stromal cells of M. eugenii and to epithelial cell nuclei in T. vulpecula, suggesting its involvement in cellular processes that are independent of adhesion and may compensate for reduced lateral adhesion in the uterine epithelium. We conclude that non-invasive placentation in marsupials involves diverse and complementary strategies to maintain an intact epithelial barrier.


Subject(s)
Desmoglein 2/metabolism , Embryo Implantation/physiology , Macropodidae/embryology , Placentation/physiology , Trichosurus/embryology , Uterus/metabolism , Animals , Epithelium/physiology , Female , Pregnancy
12.
Reprod Fertil Dev ; 30(11): 1482-1490, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29739492

ABSTRACT

The epithelium of the uterine lumen is the first point of contact with the blastocyst before implantation. To facilitate pregnancy, these uterine epithelial cells (UECs) undergo morphological changes specific to the receptive uterus. These changes include basal, lateral and apical alterations in the plasma membrane of UECs. This study looked at the cytoskeletal and focal adhesion-associated proteins, lasp-1 and palladin, in the uterus during early pregnancy in the rat. Two palladin isoforms, 140 kDa and 90 kDa, were analysed, with the migration-associated 140-kDa isoform increasing significantly at the time of implantation when compared with the time of fertilisation. Lasp-1 was similarly increased at this time, whilst also being located predominantly apically and laterally in the UECs, suggesting a role in the initial contact between the UECs and the blastocyst. This is the first study to investigate palladin and lasp-1 in the uterine luminal epithelium and suggests an importance for these cytoskeletal proteins in the morphological changes the UECs undergo for pregnancy to occur.


Subject(s)
Cytoskeletal Proteins/metabolism , Embryo Implantation/physiology , Endometrium/metabolism , Fertilization/physiology , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Animals , Cytoskeletal Proteins/genetics , Cytoskeleton/metabolism , Epithelial Cells/metabolism , Female , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Phosphoproteins/genetics , Pregnancy , Rats
13.
Reprod Fertil Dev ; 30(4): 651-657, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29017687

ABSTRACT

Angiogenesis is a critical step in the development of ectopic lesions during endometriosis. Although total vascular endothelial growth factor (VEGF) A is elevated in the peritoneal fluid of women with endometriosis, there are contradictory reports on how levels of total endometrial VEGFA are altered in this disease. Furthermore, limited research is available on different VEGFA isoforms in women with endometriosis. Thus, the aim of the present study was to analyse levels of various VEGFA isoforms in women with and without endometriosis at different stages of the menstrual cycle. Quantitative polymerase chain reaction analysis showed that total VEGFA was highest during menstruation in endometriosis compared with controls (P=0.0373). VEGF121 and VEGF189 were similarly highest during menstruation in endometriosis compared with controls (P=0.0165 and 0.0154 respectively). The present study is also the first to identify the natural expression of VEGF111 in human tissue, which is also highest during menstruation in endometriosis (P=0.0464). This discovery of the natural production of VEGF111 in human endometrium, as well as the upregulation of VEGFA isoforms during menstruation in endometriosis, may shed further light on the development and progression of the disease, and improve our understanding of the regulation of endometrial angiogenesis.


Subject(s)
Endometriosis/metabolism , Endometrium/metabolism , Protein Isoforms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adolescent , Adult , Endometriosis/genetics , Female , Gene Expression Regulation , Humans , Menstrual Cycle/genetics , Menstrual Cycle/metabolism , Menstruation/genetics , Menstruation/metabolism , Protein Isoforms/genetics , Vascular Endothelial Growth Factor A/genetics , Young Adult
14.
J Anat ; 231(1): 84-94, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28397980

ABSTRACT

The formation of a placenta is critical for successful mammalian pregnancy and requires remodelling of the uterine epithelium. In eutherian mammals, remodelling involves specific morphological changes that often correlate with the mode of embryonic attachment. Given the differences between marsupial and eutherian placentae, formation of a marsupial placenta may involve patterns of uterine remodelling that are different from those in eutherians. Here we present a detailed morphological study of the uterus of the brushtail possum (Trichosurus vulpecula; Phalangeridae) throughout pregnancy, using both scanning and transmission electron microscopy, to identify whether uterine changes in marsupials correlate with mode of embryonic attachment as they do in eutherian mammals. The uterine remodelling of T. vulpecula is similar to that of eutherian mammals with the same mode of embryonic attachment (non-invasive, epitheliochorial placentation). The morphological similarities include development of large apical projections, and a decrease in the diffusion distance for haemotrophes around the period of embryonic attachment. Importantly, remodelling of the uterus in T. vulpecula during pregnancy differs from that of a marsupial species with non-invasive attachment (Macropus eugenii; Macropodidae) but is similar to that of a marsupial with invasive attachment (Monodelphis domestica; Didelphidae). We conclude that modes of embryonic attachment may not be typified by a particular suite of uterine changes in marsupials, as is the case for eutherian mammals, and that uterine remodelling may instead reflect phylogenetic relationships between marsupial lineages.


Subject(s)
Pregnancy, Animal/physiology , Trichosurus/physiology , Uterus/physiology , Uterus/ultrastructure , Animals , Female , Ovary/anatomy & histology , Placentation , Pregnancy , Pseudopregnancy
15.
J Anat ; 231(3): 359-365, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28670836

ABSTRACT

The uterine luminal epithelium is the first site of contact between fetal and maternal tissues during therian pregnancy and must undergo specialised changes for implantation of the blastocyst to be successful. These changes, collectively termed the plasma membrane transformation (PMT), allow the blastocyst to attach to the uterine epithelium preceding the formation of a placenta. There are similarities in the morphological and molecular changes occurring in live-bearing eutherian species during the PMT studied so far. Similar cellular remodelling occurs in a marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), despite the divergence of marsupials from eutherian mammals over 130 mya, which resulted in the evolution of distinct reproductive strategies. Adhesion molecules along the lateral plasma membrane of uterine epithelium provide a barrier to invasion by the embryo. We thus characterised the presence and change in distribution of epithelial cadherin (E-cadherin) in uterine epithelium from non-pregnant fat-tailed dunnarts and compared it to dunnarts in early-, mid- and late-stage pregnancy. E-cadherin staining is localised to the lateral plasma membrane in uterine epithelium from non-pregnant and early-stage pregnant dunnarts. The E-cadherin staining is cytoplasmic in epithelium from uteri of mid- and late-stage pregnant dunnarts. This loss of localised staining suggests that the adherens junction dissociates from the lateral plasma membrane, allowing for invasion between the epithelial cells by the blastocyst. As the changes during pregnancy to cadherin were similar in the laboratory rat with highly invasive (haemochorial) placentation, a live-bearing lizard species with non-invasive (epitheliochorial) placentation and a marsupial, the fat-tailed dunnart, which has invasive (endotheliochorial) placentation, we suggest that the molecular mechanisms allowing for successful pregnancy are conserved among mammals during the early stages of pregnancy regardless of placental invasiveness.


Subject(s)
Cadherins/metabolism , Embryo Implantation , Marsupialia/metabolism , Pregnancy, Animal/metabolism , Uterus/metabolism , Animals , Epithelium/metabolism , Female , Pregnancy
16.
Mol Reprod Dev ; 84(10): 1076-1085, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28688214

ABSTRACT

Pregnancy in mammals requires remodeling of the uterus to become receptive to the implanting embryo. Remarkably similar morphological changes to the uterine epithelium occur in both eutherian and marsupial mammals, irrespective of placental type. Nevertheless, molecular differences in uterine remodeling indicate that the marsupial uterus employs maternal defences, including molecular reinforcement of the uterine epithelium, to regulate embryonic invasion. Non-invasive (epitheliochorial) embryonic attachment in marsupials likely evolved secondarily from invasive attachment, so uterine defences in these species may prevent embryonic invasion. We tested this hypothesis by identifying localization patterns of Talin, a key basal anchoring molecule, in the uterine epithelium during pregnancy in the tammar wallaby (Macropus eugenii; Macropodidae) and the brush tail possum (Trichosurus vulpecula; Phalangeridae). Embryonic attachment is non-invasive in both species, yet Talin undergoes a clear distributional change during pregnancy in M. eugenii, including recruitment to the base of the uterine epithelium just before attachment, that closely resembles that of invasive implantation in the marsupial species Sminthopsis crassicaudata. Basal localization occurs throughout pregnancy in T. vulpecula, although, as for M. eugenii, this pattern is most specific prior to attachment. Such molecular reinforcement of the uterine epithelium for non-invasive embryonic attachment in marsupials supports the hypothesis that less-invasive and non-invasive embryonic attachment in marsupials may have evolved via accrual of maternal defences. Recruitment of basal molecules, including Talin, to the uterine epithelium may have played a key role in this transition.


Subject(s)
Embryo Implantation/physiology , Macropodidae/physiology , Pregnancy, Animal , Trichosurus/physiology , Uterus/metabolism , Animals , Epithelial Cells/metabolism , Female , Macropodidae/metabolism , Phalangeridae/metabolism , Phalangeridae/physiology , Pregnancy , Rats , Talin/metabolism , Trichosurus/metabolism , Trophoblasts/metabolism , Uterus/cytology , Uterus/physiology
17.
Reprod Fertil Dev ; 29(6): 1194-1208, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27166505

ABSTRACT

In preparation for uterine receptivity, the uterine epithelial cells (UECs) exhibit a loss of microvilli and glycocalyx and a restructuring of the actin cytoskeleton. The prominin-1 protein contains large, heavily glycosylated extracellular loops and is usually restricted to apical plasma membrane (APM) protrusions. The present study examined rat UECs during early pregnancy using immunofluorescence, western blotting and deglycosylation analyses. Ovariectomised rats were injected with oestrogen and progesterone to examine how these hormones affect prominin-1. At the time of fertilisation, prominin-1 was located diffusely in the apical domain of UECs and 147- and 120-kDa glycoforms of prominin-1 were identified, along with the 97-kDa core protein. At the time of implantation, prominin-1 concentrates towards the APM and densitometry revealed that the 120-kDa glycoform decreased (P<0.05), but there was an increase in the 97-kDa core protein (P<0.05). Progesterone treatment of ovariectomised rats resulted in prominin-1 becoming concentrated towards the APM. The 120-kDa glycoform was increased after oestrogen treatment (P<0.0001), whereas the 97-kDa core protein was increased after progesterone treatment (P<0.05). Endoglycosidase H analysis demonstrated that the 120-kDa glycoform is in the endoplasmic reticulum, undergoing protein synthesis. These results indicate that oestrogen stimulates prominin-1 production, whereas progesterone stimulates the deglycosylation and concentration of prominin-1 to the apical region of the UECs. This likely presents the deglycosylated extracellular loops of prominin-1 to the extracellular space, where they may interact with the implanting blastocyst.


Subject(s)
AC133 Antigen/metabolism , Embryo Implantation , Endometrium/metabolism , Fertilization , Ovary/metabolism , Protein Processing, Post-Translational , Uterus/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Cytochalasin D/pharmacology , Endometrium/cytology , Endometrium/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Glucuronidase/metabolism , Glycosylation/drug effects , Microvilli/drug effects , Microvilli/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Ovariectomy , Ovary/physiology , Ovary/surgery , Pregnancy , Progesterone/metabolism , Progesterone/pharmacology , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , Random Allocation , Rats, Wistar , Uterus/cytology , Uterus/drug effects
18.
Reproduction ; 152(6): 753-763, 2016 12.
Article in English | MEDLINE | ID: mdl-27651522

ABSTRACT

Controlled ovarian hyperstimulation is an essential component of IVF techniques to ensure proliferation and development of multiple ovarian follicles, but the effects of these hormones on the endometrium are largely unknown. During normal pregnancy in rats, there are significant changes in the basal plasma membrane of uterine epithelial cells (UECs) at the time of receptivity, including loss of focal adhesions. This enables the UECs to be removed from the implantation chamber surrounding the blastocyst, thus allowing invasion into the underlying stroma. This study investigated the influence of ovarian hyperstimulation (OH) on the basal plasma membrane of UECs during early pregnancy in the rat. Immunofluorescence results demonstrate the presence of paxillin, talin, integrin ß1 and phosphorylated FAK (Y397FAK) in the basal portion of UECs at the time of implantation in OH pregnancy. TEM analysis demonstrated a flattened basal lamina and the presence of focal adhesions on the basal surface at this time in OH pregnancy. Significantly low full-length paxillin, high paxillin δ and integrin ß1 were seen at the time of implantation in OH compared with those in normal pregnancy. The increase in paxillin δ suggests that these cells are less mobile, whereas the increase in integrin ß1 and Y397FAK suggests the retention of a stable FA complex. Taken together with the increase in morphological focal adhesions, this represents a cell type that is stable and less easily removed for blastocyst implantation. This may be one mechanism explaining lower implantation rates after fresh embryo transfers compared with frozen cycles.


Subject(s)
Embryo Implantation , Focal Adhesions/pathology , Ovarian Hyperstimulation Syndrome/physiopathology , Uterus/pathology , Animals , Cell Membrane/metabolism , Female , Focal Adhesions/metabolism , Rats , Rats, Wistar , Uterus/metabolism
19.
Reprod Fertil Dev ; 28(7): 960-968, 2016 Jun.
Article in English | MEDLINE | ID: mdl-25557137

ABSTRACT

During early pregnancy the endometrium undergoes a major transformation in order for it to become receptive to blastocyst implantation. The actin cytoskeleton and plasma membrane of luminal uterine epithelial cells (UECs) and the underlying stromal cells undergo dramatic remodelling to facilitate these changes. Filamin A (FLNA), a protein that crosslinks actin filaments and also mediates the anchorage of membrane proteins to the actin cytoskeleton, was investigated in the rat uterus at fertilisation (Day 1) and implantation (Day 6) to determine the role of FLNA in actin cytoskeletal remodelling of UECs and decidua during early pregnancy. Localisation of FLNA in UECs at the time of fertilisation was cytoplasmic, whilst at implantation it was distributed apically; its localisation is under the influence of progesterone. FLNA was also concentrated to the first two to three stromal cell layers at the time of fertilisation and shifted to the primary decidualisation zone at the time of implantation. This shift in localisation was found to be dependent on the decidualisation reaction. Protein abundance of the FLNA 280-kDa monomer and calpain-cleaved fragment (240kDa) did not change during early pregnancy in UECs. Since major actin cytoskeletal remodelling occurs during early pregnancy in UECs and in decidual cells, the changing localisation of FLNA suggests that it may be an important regulator of cytoskeletal remodelling of these cells to allow uterine receptivity and decidualisation necessary for implantation in the rat.


Subject(s)
Actins/chemistry , Cytoskeleton/physiology , Embryo Implantation , Filamins/chemistry , Uterus/physiology , Animals , Female , Pregnancy , Rats , Rats, Wistar , Staphylococcal Protein A
20.
Histochem Cell Biol ; 143(6): 637-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25618412

ABSTRACT

The plasma membrane of uterine epithelial cells undergoes a number of changes during early pregnancy. The changes in the basolateral membrane at the time of implantation in particular change from being smooth to highly tortuous in morphology, along with a dramatic increase in the number of morphological caveolae at this time. The major protein of caveolar membranes is caveolin, and previous studies have shown that RNA pol I transcription factor (PTRF) and serum deprivation protein response (SDPR) are the two members of the cavin protein family. These proteins are known to be involved in caveolae biogenesis, where they directly bind to cholesterol and lipids and have been reported to promote membrane curvature. As there is an increase in membrane tortuosity and caveolae at the time of implantation, this study investigated PTRF and SDPR to explore the possible roles that they play in the morphology of the uterine epithelium during early pregnancy. PTRF protein abundance did not change in uterine epithelial cells during early pregnancy or in response to ovarian hormones. At the time of implantation in uterine epithelial cells, PTRF co-immunoprecipitated with caveolin 1, thereby demonstrating an association with caveolin-1 at the basal plasma membrane in caveolae. SDPR protein was observed to be present only at the time of fertilisation, and also under the influence of oestrogen alone, where a cytoplasmic localisation in uterine epithelial cells was observed. The localisation and expression PTRF and SDPR in uterine epithelial cells during early pregnancy suggest that they have roles in the maintenance of lipids and cholesterol in the plasma membrane. PTRF and lack of SDPR may contribute not only to the morphology of the basal plasma membrane as observed at the time of implantation, but also to the maintenance of epithelial polarity during early pregnancy.


Subject(s)
Carrier Proteins/metabolism , Caveolin 1/metabolism , Membrane Proteins/metabolism , Pregnancy, Animal , RNA-Binding Proteins/metabolism , Animals , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Male , Pregnancy , Rats , Rats, Wistar , Time Factors , Uterus/cytology , Uterus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL