Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Cell ; 162(6): 1365-78, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26359988

ABSTRACT

The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.


Subject(s)
Cachexia/drug therapy , Neoplasms/pathology , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Atrophy/drug therapy , Cachexia/pathology , Cell Death , Colonic Neoplasms/drug therapy , Cytokine TWEAK , Female , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Muscle Development , Neoplasms/metabolism , Receptors, Tumor Necrosis Factor/chemistry , Receptors, Tumor Necrosis Factor/metabolism , Sequence Alignment , Signal Transduction , TWEAK Receptor , Tumor Necrosis Factors/metabolism
2.
Circ Res ; 134(10): 1259-1275, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38597112

ABSTRACT

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.


Subject(s)
Angiotensin II , Muscle, Smooth, Vascular , Receptors, G-Protein-Coupled , Animals , Humans , Male , Mice , Angiotensin II/pharmacology , Cells, Cultured , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/chemically induced , Hypertension/genetics , Mesenteric Arteries/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Vasoconstriction
3.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429578

ABSTRACT

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Subject(s)
Colonic Neoplasms , Drosophila Proteins , Insulins , Mice , Animals , Humans , Cachexia/etiology , Cachexia/metabolism , Drosophila/metabolism , Mitochondrial Dynamics , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Colonic Neoplasms/metabolism , Insulins/metabolism , Lipids , Insulin-Like Growth Factor Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
4.
Dis Esophagus ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769843

ABSTRACT

Neoadjuvant cancer treatment (NCT) reduces both physical fitness and physical activity (PA) levels, which can increase the risk of adverse outcomes in cancer patients. This study aims to determine the effect of exercise prehabilitation on PA and sedentary behavior (SB) in patients undergoing NCT and surgery for esophagogastric malignancies. This study is a randomized pragmatic controlled multi-center trial conducted across three Irish hospitals. Participants were aged ≥18 years scheduled for esophagectomy or gastrectomy and were planned for NCT and surgery. Participants were randomized to an exercise prehabilitation group (EX) that commenced following cancer diagnosis, continued to the point of surgery, and resumed following recovery from surgery for 6 weeks or to usual care (UC) who received routine treatment. The primary outcome measures were PA and SB. Between March 2019 and December 2020, 71 participants were recruited: EX (n = 36) or UC (n = 35). No significant differences were found between the EX group and UC group on levels of PA or SBs across all measured timepoints. Significant decreases in moderate-vigorous physical activity levels (MVPAs) were found between baseline and post-surgery (P = 0.028), pre-surgery and post-surgery (P = 0.001) and pre-surgery and 6-week follow-up (P = 0.022) for all participants. Step count also significantly decreased between pre-surgery and post-surgery (P < 0.001). Baseline aerobic fitness was positively associated to PA levels and negatively associated with SB. Esophagogastric cancer patients have lower than recommended levels of PA at the time of diagnosis and this decreased further following completion of NCT. An optional home- or group-based exercise intervention was not effective in improving PA levels or behaviors across the cancer treatment journey.

5.
Am J Physiol Cell Physiol ; 324(2): C205-C221, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36534500

ABSTRACT

Cancer cachexia is common in many cancers and the loss of skeletal muscle mass compromises the response to therapies and quality of life. A contributing mechanism is oxidative stress and compounds able to attenuate it may be protective. Sulforaphane (SFN), a natural antioxidant in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) signaling to decrease oxidative stress. Although SFN has potential as a cancer therapeutic, whether it can attenuate muscle wasting in the absence or presence of chemotherapy is unknown. In healthy C2C12 myotubes, SFN administration for 48 h induced hypertrophy through increased myoblast fusion via Nrf2 and ERK signaling. To determine whether SFN could attenuate wasting induced by cancer cells, myotubes were cocultured with or without Colon-26 (C-26) cancer cells for 48 h and treated with 5-fluorouracil (5-FU, 5 µM) or vehicle (DMSO). SFN (10 µM) or DMSO was added for the final 24 h. Coculture with cancer cells in the absence and presence of 5-FU reduced myotube width by ∼30% (P < 0.001) and ∼20% (P < 0.01), respectively, which was attenuated by SFN (P < 0.05). Exposure to C-26 conditioned media reduced myotube width by 15% (P < 0.001), which was attenuated by SFN. Western immunoblotting and qRT-PCR confirmed activation of Nrf2 signaling and antioxidant genes. Coadministration of Nrf2 inhibitors (ML-385) or MEK inhibitors (PD184352) revealed that SFN's attenuation of atrophy was blocked by ERK inhibition. These data support the chemoprotective and antioxidative function of SFN in myotubes, highlighting its therapeutic potential for cancer-related muscle wasting.


Subject(s)
Antioxidants , Neoplasms , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Dimethyl Sulfoxide/metabolism , Quality of Life , Muscle Fibers, Skeletal/metabolism , Oxidative Stress , Muscular Atrophy/pathology , Neoplasms/metabolism , Fluorouracil/pharmacology
6.
J Physiol ; 600(16): 3749-3774, 2022 08.
Article in English | MEDLINE | ID: mdl-35837833

ABSTRACT

We investigated whether digoxin lowered muscle Na+ ,K+ -ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak-workrate , 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ and 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , 90% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ to fatigue) trials using a double-blind, crossover, randomised, counter-balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , fatigue, 3 h after exercise). In DIG, in resting muscle, [3 H]-ouabain binding site content (OB-Fab ) was unchanged; however, bound-digoxin removal with Digibind revealed total ouabain binding (OB+Fab ) increased (8.2%, P = 0.047), indicating 7.6% NKA-digoxin occupancy. Quadriceps muscle strength declined in DIG (-4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+ ]a were unchanged, whilst [K+ ]v was lower (P = 0.042) and [K+ ]a-v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB-Fab was increased at 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (per wet-weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+ ]a , [K+ ]v and [K+ ]a-v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+ ]a , [K+ ]v and [K+ ]a-v were unchanged; with exercise (main effects), plasma [K+ ]a , [K+ ]v , [K+ ]a-v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA-digoxin occupancy, with K+ disturbances and fatiguability unchanged. KEY POINTS: The Na+ ,K+ -ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+ ]), excitability and plasma [K+ ] and thereby also in modulating fatigue during intense contractions. NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3 H]-ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+ ] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.


Subject(s)
Digoxin , Ouabain , Adult , Digoxin/metabolism , Fatigue , Humans , Muscle, Skeletal/physiology , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
7.
Am J Physiol Cell Physiol ; 320(6): C956-C965, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33729835

ABSTRACT

The dystrophin-glycoprotein complex (DGC) is a multiprotein structure required to maintain muscle fiber membrane integrity, transmit force by linking the actin cytoskeleton with the extracellular matrix, and maintain muscle homeostasis. Membrane localization of dystrophin is perturbed in muscles wasting as a consequence of cancer cachexia, tenotomy, and advanced aging, which are all associated with low level, chronic inflammation. Strategies to preserve dystrophin expression at the sarcolemma might therefore combat muscle wasting. Phosphorylation of dystrophin serine 3059 (S3059) enhances the interaction between dystrophin and ß-dystroglycan. To test the contribution of amino acid phosphorylation to muscle fiber size changes, dystrophin constructs with phospho-null and phosphomimetic mutations were transfected into C2C12 muscle cells or AAV-293 cells in the presence or absence of kinase inhibitors/activators to assess effects on myotube diameter and protein function. Overexpression of a dystrophin construct with a phospho-null mutation at S3059 in vitro reduced myotube size in healthy C2C12 cells. Conversely overexpression of a phosphomimetic mutation at S3059 attenuated inflammation-induced myotube atrophy. Increased ERK activation by addition of phorbol myristate acetate (PMA) also reduced inflammation-associated myotube atrophy and increased the interaction between dystrophin and ß-dystroglycan. These findings demonstrate a link between increased ERK activation, dystrophin S3059 phosphorylation, stabilization of the DGC, and the regulation of muscle fiber size. Interventions that increase dystrophin S3059 phosphorylation to promote stronger binding of dystrophin to ß-dystroglycan may have therapeutic potential for attenuation of inflammation-associated muscle wasting.


Subject(s)
Dystrophin/metabolism , Inflammation/metabolism , MAP Kinase Signaling System/physiology , Muscle Fibers, Skeletal/metabolism , Phosphorylation/physiology , Animals , Cachexia/metabolism , Cell Membrane/metabolism , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Humans , Membrane Glycoproteins/metabolism , Mice , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Sarcolemma/metabolism
8.
Twin Res Hum Genet ; 22(6): 438-445, 2019 12.
Article in English | MEDLINE | ID: mdl-31767048

ABSTRACT

Twins Research Australia (TRA) is a community of twins and researchers working on health research to benefit everyone, including twins. TRA leads multidisciplinary research through the application of twin and family study designs, with the aim of sustaining long-term twin research that, both now and in the future, gives back to the community. This article summarizes TRA's recent achievements and future directions, including new methodologies addressing causation, linkage to health, economic and educational administrative datasets and to geospatial data to provide insight into health and disease. We also explain how TRA's knowledge translation and exchange activities are key to communicating the impact of twin studies to twins and the wider community. Building researcher capability, providing registry resources and partnering with all key stakeholders, particularly the participants, are important for how TRA is advancing twin research to improve health outcomes for society. TRA provides researchers with open access to its vibrant volunteer membership of twins, higher order multiples (multiples) and families who are willing to consider participation in research. Established four decades ago, this resource facilitates and supports research across multiple stages and a breadth of health domains.


Subject(s)
Biomedical Research , Diseases in Twins/epidemiology , Registries/statistics & numerical data , Research Design/standards , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Australia/epidemiology , Diseases in Twins/genetics , Diseases in Twins/pathology , Humans , Incidence , Surveys and Questionnaires
9.
Wetlands (Wilmington) ; 39(1): 127-137, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-33424080

ABSTRACT

Wetlands can be significant sinks for Nr, via denitrification. There is a lack of understanding about factors controlling denitrification. Research suggests that hydrology, geomorphology, and nitrogen loading are dominant controls. We compared site-scale characteristics with denitrification enzyme activity (DEA) in wetlands along gradients of drainage basin land use to explore the relative importance of landscape and site-scale factors for determining denitrification potential. DEA rates ranged between 0.01-1.69 (µg N gdw-1 hr-1), with most sites falling at the lower end. Sites with higher DEA rates had higher percentages of soil carbon and nitrogen, concentrations of soil extractable NO3 and percent loss on ignition. Sites with upstream agricultural activity had higher DEA rates than more natural sites, but there existed a wide range of DEA rates along both agricultural and urban land gradients. When multiple site and landscape-scale explanatory factors were compared to DEA rates, two site and one landscape scale characteristic (Soil NO3, Soil Percent N, and Percent Agriculture) had significant (p<0.001, cum. r2 = 0.77) correlations with DEA rates. Our results suggest that DEA is controlled mainly by local-scale site characteristics with more work needed to determine the interdependencies and relative importance among these and potentially related landscape-scale factors.

10.
Am J Pathol ; 186(12): 3246-3260, 2016 12.
Article in English | MEDLINE | ID: mdl-27750047

ABSTRACT

Duchenne muscular dystrophy is a severe and progressive striated muscle wasting disorder that leads to premature death from respiratory and/or cardiac failure. We have previously shown that treatment of young dystrophic mdx and dystrophin/utrophin null (dko) mice with BGP-15, a coinducer of heat shock protein 72, ameliorated the dystrophic pathology. We therefore tested the hypothesis that later-stage BGP-15 treatment would similarly benefit older mdx and dko mice when the dystrophic pathology was already well established. Later stage treatment of mdx or dko mice with BGP-15 did not improve maximal force of tibialis anterior (TA) muscles (in situ) or diaphragm muscle strips (in vitro). However, collagen deposition (fibrosis) was reduced in TA muscles of BGP-15-treated dko mice but unchanged in TA muscles of treated mdx mice and diaphragm of treated mdx and dko mice. We also examined whether BGP-15 treatment could ameliorate aspects of the cardiac pathology, and in young dko mice it reduced collagen deposition and improved both membrane integrity and systolic function. These results confirm BGP-15's ability to improve aspects of the dystrophic pathology but with differing efficacies in heart and skeletal muscles at different stages of the disease progression. These findings support a role for BGP-15 among a suite of pharmacological therapies for Duchenne muscular dystrophy and related disorders.


Subject(s)
Dystrophin/genetics , Muscular Dystrophy, Duchenne/drug therapy , Oximes/therapeutic use , Piperidines/therapeutic use , Utrophin/genetics , Animals , Diaphragm/physiopathology , Disease Models, Animal , Dystrophin/metabolism , HSP72 Heat-Shock Proteins/metabolism , Heart/physiopathology , Humans , Male , Mice , Mice, Inbred mdx , Mice, Mutant Strains , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Utrophin/metabolism
11.
Hum Mol Genet ; 23(25): 6697-711, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25082828

ABSTRACT

Mutations in dystrophin lead to Duchenne muscular dystrophy, which is among the most common human genetic disorders. Dystrophin nucleates assembly of the dystrophin-glycoprotein complex (DGC), and a defective DGC disrupts an essential link between the intracellular cytoskeleton and the basal lamina, leading to progressive muscle wasting. In vitro studies have suggested that dystrophin phosphorylation may affect interactions with actin or syntrophin, yet whether this occurs in vivo or affects protein function remains unknown. Utilizing nanoflow liquid chromatography mass spectrometry, we identified 18 phosphorylated residues within endogenous dystrophin. Mutagenesis revealed that phosphorylation at S3059 enhances the dystrophin-dystroglycan interaction and 3D modeling utilizing the Rosetta software program provided a structural model for how phosphorylation enhances this interaction. These findings demonstrate that phosphorylation is a key mechanism regulating the interaction between dystrophin and the DGC and reveal that posttranslational modification of a single amino acid directly modulates the function of dystrophin.


Subject(s)
Dystroglycans/metabolism , Dystrophin-Associated Proteins/metabolism , Dystrophin/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Amino Acid Sequence , Animals , Cell Differentiation , Cell Line , Cysteine/chemistry , Cysteine/metabolism , Dystroglycans/chemistry , Dystroglycans/genetics , Dystrophin/chemistry , Dystrophin/genetics , Dystrophin-Associated Proteins/chemistry , Dystrophin-Associated Proteins/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Models, Molecular , Molecular Sequence Data , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Myoblasts/cytology , Myoblasts/metabolism , Phosphorylation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Serine/chemistry , Serine/metabolism , Signal Transduction
12.
Br J Haematol ; 172(2): 157-69, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26456767

ABSTRACT

The pathophysiological mechanisms underlying chronic neutropenia are extensive, varying from haematopoietic stem cell disorders resulting in defective neutrophil production, to accelerated apoptosis of neutrophil progenitors or circulating mature neutrophils. While the knowledge concerning genetic defects associated with congenital neutropenia or bone marrow failure is increasing rapidly, the functional role and consequences of these genetic alterations is often not well understood. In addition, there is a large group of diseases, including primary immunodeficiencies and metabolic diseases, in which chronic neutropenia is one of the symptoms, while there is no clear bone marrow pathology or haematopoietic stem cell dysfunction. Altogether, these disease entities illustrate the complexity of normal neutrophil development, the functional role of the (bone marrow) microenvironment and the increased propensity to undergo apoptosis, which is typical for neutrophils. The large variety of disorders associated with chronic neutropenia makes classification almost impossible and possibly not desirable, based on the clinical phenotypes. However, a better understanding of the regulation of normal myeloid differentiation and neutrophil development is of great importance in the diagnostic evaluation of unexplained chronic neutropenia. In this review we propose insights in the pathophysiology of chronic neutropenia in the context of the functional role of key players during normal neutrophil development, neutrophil release and neutrophil survival.


Subject(s)
Neutropenia/pathology , Bone Marrow Cells/pathology , Cell Differentiation , Chronic Disease , Congenital Bone Marrow Failure Syndromes , Hematopoietic Stem Cells/pathology , Humans , Neutropenia/congenital , Neutrophils/pathology
13.
Am J Physiol Heart Circ Physiol ; 310(4): H466-77, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26718971

ABSTRACT

Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia.


Subject(s)
Cachexia/complications , Heart Diseases/etiology , Myocardium/pathology , Neoplasms/complications , Animals , Atrophy , Cachexia/etiology , Cachexia/pathology , Heart Diseases/pathology , Humans , Neoplasms/pathology
14.
Twin Res Hum Genet ; 19(6): 687-691, 2016 12.
Article in English | MEDLINE | ID: mdl-27852353

ABSTRACT

The Brazilian Twin Registry (BTR) was established in 2013 and has impelled twin research in South America. The main aim of the initiative was to create a resource that would be accessible to the Brazilian scientific community as well as international researchers interested in the investigation of the contribution of genetic and environmental factors in the development of common diseases, phenotypes, and human behavior traits. The BTR is a joint effort between academic and governmental institutions from Brazil and Australia. The collaboration includes the Federal University of Minas Gerais (UFMG) in Brazil, the University of Sydney and University of Melbourne in Australia, the Australian Twin Registry, as well as the research foundations CNPq and CAPES in Brazil. The BTR is a member of the International Network of Twin Registries. Recruitment strategies used to register twins have been through participation in a longitudinal study investigating genetic and environmental factors for low back pain occurrence, and from a variety of sources including media campaigns and social networking. Currently, 291 twins are registered in the BTR, with data on demographics, zygosity, anthropometrics, and health history having been collected from 151 twins using a standardized self-reported questionnaire. Future BTR plans include the registration of thousands of Brazilian twins identified from different sources and collaborate nationally and internationally with other research groups interested on twin studies.


Subject(s)
Diseases in Twins/epidemiology , Registries , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Adult , Australia , Brazil , Diseases in Twins/genetics , Female , Humans , Longitudinal Studies , Male , Surveys and Questionnaires
15.
FASEB J ; 28(4): 1711-23, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24378873

ABSTRACT

In models of cancer cachexia, inhibiting type IIB activin receptors (ActRIIBs) reverse muscle wasting and prolongs survival, even with continued tumor growth. ActRIIB mediates signaling of numerous TGF-ß proteins; of these, we demonstrate that activins are the most potent negative regulators of muscle mass. To determine whether activin signaling in the absence of tumor-derived factors induces cachexia, we used recombinant serotype 6 adeno-associated virus (rAAV6) vectors to increase circulating activin A levels in C57BL/6 mice. While mice injected with control vector gained ~10% of their starting body mass (3.8±0.4 g) over 10 wk, mice injected with increasing doses of rAAV6:activin A exhibited weight loss in a dose-dependent manner, to a maximum of -12.4% (-4.2±1.1 g). These reductions in body mass in rAAV6:activin-injected mice correlated inversely with elevated serum activin A levels (7- to 24-fold). Mechanistically, we show that activin A reduces muscle mass and function by stimulating the ActRIIB pathway, leading to deleterious consequences, including increased transcription of atrophy-related ubiquitin ligases, decreased Akt/mTOR-mediated protein synthesis, and a profibrotic response. Critically, we demonstrate that the muscle wasting and fibrosis that ensues in response to excessive activin levels is fully reversible. These findings highlight the therapeutic potential of targeting activins in cachexia.


Subject(s)
Activins/genetics , Cachexia/genetics , Gene Expression , Muscular Atrophy/genetics , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Activins/blood , Activins/metabolism , Animals , Blotting, Western , Cachexia/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dependovirus/genetics , Genetic Vectors/genetics , Humans , MCF-7 Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Myostatin/deficiency , Myostatin/genetics , Reverse Transcriptase Polymerase Chain Reaction , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction/genetics
16.
Twin Res Hum Genet ; 18(3): 298-305, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25851727

ABSTRACT

All same-sex dizygotic (DZ) twins and approximately one-third of monozygotic (MZ) twin pairs have separate placentas, making it impossible to use the number of placentas to determine zygosity. Zygosity determination is further complicated because incorrect assumptions are often made, such as that only DZ pairs have two placentas and that all MZ pairs are phenotypically identical. These assumptions, by twins, their families and health professionals, along with the lack of universal zygosity testing for same-sex twins, has led to confusion within the twin community, yet little research has been conducted with twins about their understanding and assumptions about zygosity. We aimed to explore and quantify understanding and assumptions about zygosity using twins attending an Australian twin festival. We recruited 91 twin pairs younger than 18 years of age and their parents, and 30 adult twin pairs who were all uncertain of their zygosity, to complete one pen and paper questionnaire and one online questionnaire about their assumed zygosity, reasons for their assumptions and the importance of accurate zygosity knowledge. Responses were compared with their true zygosity measured using a genetic test. We found a substantial proportion of parents and twins had been misinformed by their own parents or medical professionals, and that knowledge of their true zygosity status provided peace of mind and positive emotional responses. For these reasons we propose universal zygosity testing of same-sex twins as early in life as possible and an increase in education of medical professionals, twins and families of twins about zygosity issues.


Subject(s)
Attitude to Health , Self Concept , Twins, Dizygotic/psychology , Twins, Monozygotic/psychology , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , DNA/genetics , Disclosure , Emotions , Exploratory Behavior , Female , Genotype , Human Rights , Humans , Infant , Male , Middle Aged , Parents/psychology , Patient Access to Records , Sibling Relations , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Victoria , Young Adult
17.
Toxicon ; 247: 107836, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945217

ABSTRACT

The venoms of Australasian elapid snakes are known to possess coagulant activity, including some with strong procoagulant activity and others with anticoagulant activity, although the latter are less well known. This study investigates the anticoagulant activity of Australasian elapid snake venoms, and whether this activity is neutralised by commercial snake antivenom and varespladib (PLA2 inhibiting agent). Clotting assays were completed for 34 species of Australasian elapids. Antivenom neutralisation assays with tiger snake antivenom (TSAV) were performed on five species to determine if there was cross-neutralisation. Varespladib neutralisation assays were also completed for the same five species. All Pseudechis species venoms had anticoagulant activity, except P. porphyriacus, which was procoagulant. Pseudechis species venoms had similar anticoagulant potency ranging from the most potent P. colletti venom to the least potent P. butleri venom. The three Austrelaps (copperhead) species venoms were the next most potent anticoagulants. Six further snakes, Elapognathus coronatus, Acanthophis pyrrhus, A. antarcticus, Suta suta, Denisonia devisi and D. maculata, had weaker anticoagulant activity, except for D. maculata which had similar anticoagulant activity to Pseudechis species. Tiger Snake Antivenom (1200mU/mL) neutralised the anticoagulant effect of P. australis for concentrations up to 1 mg/mL. TSAV (1200mU/mL) also neutralised P. colletti, D. maculata, A. superbus and A. pyrrhus venoms at their EC50, demonstrating cross neutralisation. Varespladib neutralised the anticoagulant effect of P. australis venom at 5 µM and for venoms of P. colletti, D. maculata, A. superbus and A. pyrrhus. We found anticoagulant activity to be present in six genera of Australasian snakes at low concentrations, which can be completely neutralised by both antivenom and varespladib. Anticoagulant activity in Australian elapid venoms was associated with species possessing high PLA2 activity without procoagulant snake venom serine proteases.

18.
J Inorg Biochem ; 259: 112632, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38950482

ABSTRACT

Aminophenol dioxygenases (APDO) are mononuclear nonheme iron enzymes that utilize dioxygen (O2) to catalyze the conversion of o-aminophenols to 2-picolinic acid derivatives in metabolic pathways. This study describes the synthesis and O2 reactivity of two synthetic models of substrate-bound APDO: [FeII(TpMe2)(tBu2APH)] (1) and [FeII(TpMe2)(tBuAPH)] (2), where TpMe2 = hydrotris(3,5-dimethylpyrazole-1-yl)borate, tBu2APH = 4,6-di-tert-butyl-2-aminophenolate, and tBuAPH2 = 4-tert-butyl-2-aminophenolate. Both Fe(II) complexes behave as functional APDO mimics, as exposure to O2 results in oxidative CC bond cleavage of the o-aminophenolate ligand. The ring-cleaved products undergo spontaneous cyclization to give substituted 2-picolinic acids, as verified by 1H NMR spectroscopy, mass spectrometry, and X-ray crystallography. Reaction of the APDO models with O2 at low temperature reveals multiple intermediates, which were probed with UV-vis absorption, electron paramagnetic resonance (EPR), Mössbauer (MB), and resonance Raman (rRaman) spectroscopies. The most stable intermediate at -70 °C in THF exhibits multiple isotopically-sensitive features in rRaman samples prepared with 16O2 and 18O2, confirming incorporation of O2-derived atom(s) into its molecular structure. Insights into the geometric structures, electronic properties, and spectroscopic features of the observed intermediates were obtained from density functional theory (DFT) calculations. Although functional APDO models have been previously reported, this is the first time that an oxygenated ligand-based radical has been detected and spectroscopically characterized in the ring-cleaving mechanism of a relevant synthetic system.

19.
Int J Cancer ; 133(5): 1234-46, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23436228

ABSTRACT

Cancer cachexia describes the progressive skeletal muscle wasting and weakness associated with many cancers. Cachexia reduces mobility and quality of life and accounts for 20-30% of all cancer-related deaths. Activation of the renin-angiotensin system causes skeletal muscle wasting and weakness. We tested the hypothesis that treatment with the angiotensin converting enzyme (ACE) inhibitor, perindopril, would enhance whole body and skeletal muscle function in cachectic mice bearing Colon-26 (C-26) tumors. CD2F1 mice received a subcutaneous injection of phosphate buffered saline or C-26 tumor cells inducing either a mild or severe cachexia. The following day, one cohort of C-26 mice began receiving perindopril in their drinking water (4 mg kg(-1) day(-1) ) for 21 days. In mild and severe cachexia, perindopril increased measures of whole body function (grip strength and rotarod) and reduced fatigue in isolated contracting diaphragm muscle strips (p < 0.05). In severely cachectic mice, perindopril reduced tumor growth, improved locomotor activity and reduced fatigue of tibialis anterior muscles in situ (p < 0.05), which was associated with increased oxidative enzyme capacity (succinate deyhydrogenase, p < 0.05). Perindopril attenuated the increase in MuRF-1 and IL-6 mRNA expression and enhanced Akt phosphorylation in severely cachectic mice but neither body nor muscle mass was increased. These findings support the therapeutic potential of ACE inhibition for enhancing whole body function and reducing fatigue of respiratory muscles in early and late stage cancer cachexia and should be confirmed in future clinical trials. Since ACE inhibition alone did not enhance body or muscle mass, co-treatment with an anabolic agent may be required to address these aspects of cancer cachexia.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cachexia/drug therapy , Neoplasms/complications , Perindopril/pharmacology , Animals , Cachexia/metabolism , Cell Line, Tumor , Interleukin-6/genetics , Male , Mice , Motor Activity/drug effects , Muscle Fatigue/drug effects , Muscle Proteins/genetics , Muscle, Skeletal/drug effects , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/genetics
20.
Am J Physiol Regul Integr Comp Physiol ; 304(10): R854-64, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23485871

ABSTRACT

Loss of skeletal muscle mass and function (cachexia) is severe in patients with colorectal liver metastases because of the large increase in resting energy expenditure but remains understudied because of a lack of suitable preclinical models. Our aim was to characterize a novel preclinical model of cachexia in colorectal liver metastases. We tested the hypothesis that mice with colorectal liver metastases would exhibit cachexia, as evidenced by a reduction in liver-free body mass, muscle mass, and physiological impairment. Twelve-week-old male CBA mice received an intrasplenic injection of Ringer solution (sham) or murine colorectal cancer cells (MoCR) to induce colorectal liver metastases. At end-point (20-29 days), the livers of MoCR mice were infiltrated completely with metastases, and MoCR mice had reduced liver-free body mass, muscle mass, and epididymal fat mass compared with sham controls (P < 0.03). MoCR mice exhibited impaired rotarod performance and grip strength (P < 0.03). Histochemical analyses of tibialis anterior muscles from MoCR mice revealed muscle fiber atrophy and reduced oxidative enzyme activity (P < 0.001). Adipose tissue remodeling was evident in MoCR mice, with reduced adipocyte diameter and greater infiltration of nonadipocyte tissue (P < 0.05). These findings reveal the MoCR mouse model exhibits significant cachexia and is a suitable preclinical model of cachexia in colorectal liver metastases. This model should be used for identifying effective treatments for cachexia to improve quality of life and reduce mortality in patients with colorectal liver metastases.


Subject(s)
Cachexia/physiopathology , Carcinoma/complications , Colorectal Neoplasms/complications , Liver Neoplasms/complications , Muscular Atrophy/physiopathology , Animals , Cachexia/etiology , Cachexia/pathology , Carcinoma/physiopathology , Carcinoma/secondary , Colorectal Neoplasms/pathology , Colorectal Neoplasms/physiopathology , Disease Models, Animal , Energy Metabolism , Hand Strength/physiology , Liver/pathology , Liver/physiopathology , Liver Neoplasms/physiopathology , Liver Neoplasms/secondary , Male , Mice , Mice, Inbred CBA , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Rotarod Performance Test
SELECTION OF CITATIONS
SEARCH DETAIL