Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Annu Rev Immunol ; 34: 93-119, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26735697

ABSTRACT

The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.


Subject(s)
Bone Marrow Cells/physiology , Dendritic Cells/physiology , Gene Expression Regulation , Immunity, Cellular , Animals , Cell Differentiation , Cell Lineage , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunity, Cellular/genetics , Mice , Transcriptional Activation
2.
Nat Immunol ; 23(11): 1536-1550, 2022 11.
Article in English | MEDLINE | ID: mdl-36271147

ABSTRACT

CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , CD40 Antigens/genetics , Antigen Presentation , Dendritic Cells , Mice, Inbred C57BL
3.
Annu Rev Cell Dev Biol ; 35: 381-406, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31283378

ABSTRACT

Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.


Subject(s)
Adaptive Immunity , Dendritic Cells/immunology , Gene Regulatory Networks , Immunity, Innate/genetics , Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Cytokines/metabolism , Gene Expression Regulation/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/microbiology , T-Lymphocytes/parasitology , T-Lymphocytes/virology , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Annu Rev Immunol ; 28: 389-411, 2010.
Article in English | MEDLINE | ID: mdl-20307212

ABSTRACT

B and T lymphocyte associated (BTLA) is an Ig domain superfamily protein with cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Its ligand, herpesvirus entry mediator (HVEM), is a tumor necrosis factor receptor superfamily member. The unique interaction between BTLA and HVEM allows for a system of bidirectional signaling that must be appropriately regulated to balance the outcome of the immune response. HVEM engagement of BTLA produces inhibitory signals through SH2 domain-containing protein tyrosine phosphatase 1 (Shp-1) and Shp-2 association, whereas BTLA engagement of HVEM produces proinflammatory signals via activation of NF-kappaB. The BTLA-HVEM interaction is intriguing and quite complex given that HVEM has four other ligands that also influence immune responses, the conventional TNF ligand LIGHT and lymphotoxin alpha, as well as herpes simplex virus glycoprotein D and the glycosylphosphatidylinositol-linked Ig domain protein CD160. BTLA-HVEM interactions have been shown to regulate responses in several pathogen and autoimmune settings, but our understanding of this complex system of interactions is certainly incomplete. Recent findings of spontaneous inflammation in BTLA-deficient mice may provide an important clue.


Subject(s)
Glycoproteins/immunology , Receptors, Immunologic/immunology , Receptors, Tumor Necrosis Factor, Member 14/immunology , Animals , Glycoproteins/metabolism , Humans , Immunoglobulins/immunology , Ligands , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Signal Transduction
5.
Nat Immunol ; 20(9): 1174-1185, 2019 09.
Article in English | MEDLINE | ID: mdl-31406377

ABSTRACT

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Dendritic Cells/cytology , Enhancer Elements, Genetic/genetics , Inhibitor of Differentiation Protein 2/metabolism , Interferon Regulatory Factors/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Cell Differentiation/immunology , Cells, Cultured , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/metabolism , Stem Cells/cytology
6.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Article in English | MEDLINE | ID: mdl-31406378

ABSTRACT

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Subject(s)
Dendritic Cells/cytology , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/metabolism , Macrophages/cytology , Monocytes/cytology , Animals , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Lineage , Dendritic Cells/immunology , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Stem Cells/cytology , Tumor Cells, Cultured
7.
Immunity ; 55(7): 1200-1215.e6, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35637103

ABSTRACT

Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.


Subject(s)
Antigens , T-Lymphocytes, Helper-Inducer , Adoptive Transfer , Animals , Cell Differentiation , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Stem Cells
8.
Immunity ; 55(6): 1032-1050.e14, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35704993

ABSTRACT

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Animals , Dendritic Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Mice , Signal Transduction , Tryptophan/metabolism
9.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36288724

ABSTRACT

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Animals , Mice , Tumor-Associated Macrophages , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , T-Lymphocytes, Cytotoxic , Dendritic Cells
10.
Genes Dev ; 37(7-8): 291-302, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36990511

ABSTRACT

Individual elements within a superenhancer can act in a cooperative or temporal manner, but the underlying mechanisms remain obscure. We recently identified an Irf8 superenhancer, within which different elements act at distinct stages of type 1 classical dendritic cell (cDC1) development. The +41-kb Irf8 enhancer is required for pre-cDC1 specification, while the +32-kb Irf8 enhancer acts to support subsequent cDC1 maturation. Here, we found that compound heterozygous Δ32/Δ41 mice, lacking the +32- and +41-kb enhancers on different chromosomes, show normal pre-cDC1 specification but, surprisingly, completely lack mature cDC1 development, suggesting cis dependence of the +32-kb enhancer on the +41-kb enhancer. Transcription of the +32-kb Irf8 enhancer-associated long noncoding RNA (lncRNA) Gm39266 is also dependent on the +41-kb enhancer. However, cDC1 development in mice remained intact when Gm39266 transcripts were eliminated by CRISPR/Cas9-mediated deletion of lncRNA promoters and when transcription across the +32-kb enhancer was blocked by premature polyadenylation. We showed that chromatin accessibility and BATF3 binding at the +32-kb enhancer were dependent on a functional +41-kb enhancer located in cis Thus, the +41-kb Irf8 enhancer controls the subsequent activation of the +32-kb Irf8 enhancer in a manner that is independent of associated lncRNA transcription.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Enhancer Elements, Genetic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Promoter Regions, Genetic
11.
Immunity ; 54(7): 1417-1432.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34004142

ABSTRACT

The transcriptional repressor ZEB2 regulates development of many cell fates among somatic, neural, and hematopoietic lineages, but the basis for its requirement in these diverse lineages is unclear. Here, we identified a 400-basepair (bp) region located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (TSS) that binds the E proteins at several E-box motifs and was active in hematopoietic lineages. Germline deletion of this 400-bp region (Zeb2Δ-165mice) specifically prevented Zeb2 expression in hematopoietic stem cell (HSC)-derived lineages. Zeb2Δ-165 mice lacked development of plasmacytoid dendritic cells (pDCs), monocytes, and B cells. All macrophages in Zeb2Δ-165 mice were exclusively of embryonic origin. Using single-cell chromatin profiling, we identified a second Zeb2 enhancer located at +164-kb that was selectively active in embryonically derived lineages, but not HSC-derived ones. Thus, Zeb2 expression in adult, but not embryonic, hematopoiesis is selectively controlled by the -165-kb Zeb2 enhancer.


Subject(s)
Enhancer Elements, Genetic/genetics , Hematopoiesis/genetics , Transcription, Genetic/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Dendritic Cells/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/physiology
12.
Immunity ; 54(11): 2547-2564.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34715017

ABSTRACT

Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.


Subject(s)
Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Cryptosporidium/immunology , Dendritic Cells/immunology , Host-Parasite Interactions/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Th1 Cells/immunology , Animals , Dendritic Cells/metabolism , Disease Models, Animal , Homeostasis , Intestinal Mucosa/metabolism , Mice , Microbiota , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/metabolism
13.
Nat Immunol ; 18(5): 563-572, 2017 05.
Article in English | MEDLINE | ID: mdl-28346410

ABSTRACT

Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CTLA-4 Antigen/genetics , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/metabolism , Multiprotein Complexes/metabolism , Receptors, Antigen, T-Cell/metabolism , Th2 Cells/physiology , Animals , Autoimmunity/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Genetic Predisposition to Disease , Humans , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Knockout , Polymorphism, Single Nucleotide , Protein Binding/genetics , Signal Transduction/genetics
14.
Immunity ; 53(4): 759-774.e9, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32795402

ABSTRACT

Development and function of conventional dendritic cell (cDC) subsets, cDC1 and cDC2, depend on transcription factors (TFs) IRF8 and IRF4, respectively. Since IRF8 and IRF4 can each interact with TF BATF3 at AP1-IRF composite elements (AICEs) and with TF PU.1 at Ets-IRF composite elements (EICEs), it is unclear how these factors exert divergent actions. Here, we determined the basis for distinct effects of IRF8 and IRF4 in cDC development. Genes expressed commonly by cDC1 and cDC2 used EICE-dependent enhancers that were redundantly activated by low amounts of either IRF4 or IRF8. By contrast, cDC1-specific genes relied on AICE-dependent enhancers, which required high IRF concentrations, but were activated by either IRF4 or IRF8. IRF8 was specifically required only by a minority of cDC1-specific genes, such as Xcr1, which could distinguish between IRF8 and IRF4 DNA-binding domains. Thus, these results explain how BATF3-dependent Irf8 autoactivation underlies emergence of the cDC1-specific transcriptional program.


Subject(s)
Dendritic Cells/metabolism , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/genetics , Animals , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Receptors, Chemokine/genetics , Transcription, Genetic/genetics
15.
Cell ; 156(6): 1223-1234, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630724

ABSTRACT

Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80(+)VCAM1(+) bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Heme/metabolism , Iron/metabolism , Monocytes/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , DNA-Binding Proteins/genetics , Female , Macrophages/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Myeloid Cells/metabolism , Spleen/cytology , Spleen/metabolism
16.
Immunity ; 50(4): 1069-1083.e8, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926233

ABSTRACT

Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.


Subject(s)
Acne Vulgaris/immunology , Dendritic Cells/classification , Gram-Positive Bacterial Infections/immunology , Neutrophil Infiltration/immunology , Vascular Endothelial Growth Factor A/immunology , Acne Vulgaris/microbiology , Animals , Antigen Presentation , Chemotaxis, Leukocyte/immunology , Dendritic Cells/immunology , Ear, External , Gene Expression Regulation , Gene Ontology , Gram-Positive Bacterial Infections/microbiology , Humans , Injections, Intradermal , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Propionibacterium acnes , RNA, Messenger/biosynthesis , Single-Cell Analysis , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics
17.
Nature ; 607(7917): 142-148, 2022 07.
Article in English | MEDLINE | ID: mdl-35732734

ABSTRACT

The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPß. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.


Subject(s)
Cell Differentiation , Dendritic Cells , Enhancer Elements, Genetic , Mutation , Zinc Finger E-box Binding Homeobox 2 , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Dendritic Cells/classification , Dendritic Cells/cytology , Dendritic Cells/pathology , Enhancer Elements, Genetic/genetics , Epistasis, Genetic , Inhibitor of Differentiation Protein 2 , Lymphocytes/cytology , Mice , Myeloid Cells/cytology , Nematospiroides dubius/immunology , Repressor Proteins , Th2 Cells/cytology , Th2 Cells/immunology , Zinc Finger E-box Binding Homeobox 2/genetics
18.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26054719

ABSTRACT

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Dendritic Cells/immunology , Interferon Regulatory Factors/immunology , Repressor Proteins/immunology , Stem Cells/immunology , Animals , Base Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , CD24 Antigen/immunology , CD24 Antigen/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Cells, Cultured , Clone Cells/immunology , Clone Cells/metabolism , Dendritic Cells/metabolism , Flow Cytometry , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Protein Binding , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Homology, Nucleic Acid , Stem Cells/metabolism , Transcriptome/genetics , Transcriptome/immunology
19.
Immunity ; 56(2): 225-226, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36792565
20.
Cell ; 151(2): 289-303, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23021777

ABSTRACT

Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple data sets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease.


Subject(s)
Gene Regulatory Networks , Th17 Cells/cytology , Th17 Cells/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/immunology , Fos-Related Antigen-2/immunology , Fos-Related Antigen-2/metabolism , Genome-Wide Association Study , Humans , Interferon Regulatory Factors/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL