Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Br J Clin Pharmacol ; 88(9): 4155-4162, 2022 09.
Article in English | MEDLINE | ID: mdl-35437830

ABSTRACT

AIMS: To determine whether the known single nucleotide polymorphisms in adrenoreceptor associated genes affect the haemodynamic response to dobutamine in critically ill neonates. METHODS: Alleles in the known genetic single nucleotide polymorphisms in ß1- and ß2-adrenoceptor (AR) genes and Gs protein α-subunit gene (GNAS) possibly affecting inotropic effect were identified in patients of neonatal dobutamine pharmacokinetic-pharmacodynamic study. Linear mixed-effect models were used to describe the effect of genetic polymorphisms to heart rate (HR), left ventricular output (LVO) and right ventricular output (RVO) during dobutamine treatment. RESULTS: Twenty-six neonates (5 term, 21 preterm) were studied. Dobutamine plasma concentration and exposure time respective HR (adjusted to gestational age) is dependent on ß1-AR Arg389Gly polymorphism so that in G/G (Gly) homozygotes and G/C heterozygotes dobutamine increases HR more than in C/C (Arg) homozygotes, with parameter estimate (95% CI) of 38.3 (15.8-60.7) beats/min per AUC of 100 µg L-1  h, P = .0008. LVO (adjusted to antenatal glucocorticoid administration and illness severity) and RVO (adjusted to gestational age and illness severity) is dependent on GNAS c.393C > T polymorphism so that in T/T homozygotes and C/T heterozygotes but not in C/C homozygotes LVO and RVO increase with dobutamine treatment, 24.5 (6.2-42.9) mL kg-1  min-1 per AUC of 100 µg L-1  h, P = .0095 and 33.2 (12.1-54.3) mL kg-1  min-1 per AUC of 100 µg L-1  h, P = .0025, respectively. CONCLUSION: In critically ill neonates, ß1-AR Arg389Gly and GNAS c.393C > T polymorphisms may play a role in the haemodynamic response to dobutamine during the first hours and days of life.


Subject(s)
Dobutamine , Pharmacogenetics , Critical Illness , Dobutamine/pharmacology , Female , Heart Rate/genetics , Humans , Infant, Newborn , Polymorphism, Single Nucleotide , Pregnancy
2.
BMC Pregnancy Childbirth ; 22(1): 105, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35123446

ABSTRACT

BACKGROUND: Permanent progression of paternal age and development of reproductive medicine lead to increase in number of children conceived with assisted reproductive techniques (ART). Although it is uncertain if ARTs have direct influence on offspring health, advanced paternal age, associated comorbidities and reduced fertility possess significant risks of genetic disorders to the offspring. With a broad implementation of a non-invasive prenatal testing (NIPT), more cases of genetic disorders, including sex discordance are revealed. Among biological causes of sex discordance are disorders of sexual development, majority of which are associated with the SRY gene. CASE PRESENTATION: We report a case of a non-invasive prenatal testing and ultrasound sex discordance in a 46,XY karyotype female fetus with an SRY pathogenic variant, who was conceived through an intracytoplasmic sperm injection (ICSI) due to severe oligozoospermia of the father. Advanced mean age of ICSI patients is associated with risk of de novo mutations and monogenic disorders in the offspring. Additionally, ICSI patients have higher risk to harbour infertility-predisposing mutations, including mutations in the SRY gene. These familial and de novo genetic factors predispose ICSI-conceived children to congenital malformations and might negatively affect reproductive health of ICSI-patients' offspring. CONCLUSIONS: Oligozoospermic patients planning assisted reproduction are warranted to undergo genetic counselling and testing for possible inherited and mosaic mutations, and risk factors for de novo mutations.


Subject(s)
Fetal Diseases/etiology , Fetal Diseases/genetics , Genes, sry , Gonadal Dysgenesis, 46,XY/etiology , Gonadal Dysgenesis, 46,XY/genetics , Sperm Injections, Intracytoplasmic/adverse effects , Female , Humans , Karyotyping , Noninvasive Prenatal Testing , Parents , Risk Factors
3.
Am J Med Genet A ; 170(8): 2173-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27250579

ABSTRACT

The CACNA1A gene encodes the transmembrane pore-forming alpha-1A subunit of the Cav 2.1 P/Q-type voltage-gated calcium channel. Several heterozygous mutations within this gene, including nonsense mutations, missense mutations, and expansion of cytosine-adenine-guanine repeats, are known to cause three allelic autosomal dominant conditions-episodic ataxia type 2, familial hemiplegic migraine type 1, and spinocerebellar ataxia type 6. An association with epilepsy and CACNA1A mutations has also been described. However, the link with epileptic encephalopathies has emerged only recently. Here we describe two patients, sister and brother, with compound heterozygous mutations in CACNA1A. Exome sequencing detected biallelic mutations in CACNA1A: A missense mutation c.4315T>A (p.Trp1439Arg) in exon 27, and a seven base pair deletion c.472_478delGCCTTCC (p.Ala158Thrfs*6) in exon 3. Both patients were normal at birth, but developed daily recurrent seizures in early infancy with concomitant extreme muscular hypotonia, hypokinesia, and global developmental delay. The brain MRI images showed progressive cerebral, cerebellar, and optic nerve atrophy. At the age of 5, both patients were blind and bedridden with a profound developmental delay. The elder sister died at that age. Their parents and two siblings were heterozygotes for one of those pathogenic mutations and expressed a milder phenotype. Both of them have intellectual disability and in addition the mother has adult onset cerebellar ataxia with a slowly progressive cerebellar atrophy. Compound heterozygous mutations in the CACNA1A gene presumably cause early onset epileptic encephalopathy, and progressive cerebral, cerebellar and optic nerve atrophy with reduced lifespan. © 2016 Wiley Periodicals, Inc.


Subject(s)
Alleles , Brain Diseases/genetics , Calcium Channels/genetics , Cerebellum/abnormalities , Epilepsy/genetics , Malformations of Cortical Development/genetics , Mutation , Optic Atrophy/genetics , Brain Diseases/diagnosis , Electrocardiography , Exome , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/diagnosis , Optic Atrophy/diagnosis , Pedigree , Siblings
4.
Cancers (Basel) ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37509324

ABSTRACT

BACKGROUND: Lynch syndrome (LS) is the most frequent genetically pre-disposed colorectal cancer (CRC) syndrome, accounting for 2-3% of all CRC cases. In Estonia, ~1000 new cases are diagnosed each year. This retroactive and prospective study aimed to estimate the prevalence of LS and describe disease-causing variants in mismatch repair (MMR) genes in a diagnostic setting and in the Estonian general population. METHODS: LS data for the diagnostic cohort were gathered from 2012 to 2022 and data for the general population were acquired from the Estonian Biobank (EstBB). Furthermore, we conducted a pilot study to estimate the improvement of LS diagnostic yield by raising the age limit to >50 years for immunohistochemistry analysis of MMR genes. RESULTS: We estimated LS live birth prevalence between 1930 and 2003 in Estonia at 1:8638 (95% CI: 1: 9859-7588). During the study period, we gathered 181 LS individuals. We saw almost a six-fold increase in case prevalence, probably deriving from better health awareness, improved diagnostic possibilities and the implementation of MMR IHC testing in a broader age group. CONCLUSION: The most common genes affected in the diagnostic and EstBB cohorts were MLH1 and PMS2 genes, respectively. The LS diagnosis mean age was 44.8 years for index cases and 36.8 years (p = 0.003) for family members. In the MMR IHC pilot study, 29% had LS.

5.
Front Genet ; 13: 1020543, 2022.
Article in English | MEDLINE | ID: mdl-36425062

ABSTRACT

Background: Colorectal cancer (CRC) is the third most common cancer in Estonia in both women and men. According to the Estonian National Institute for Health Development, in 2017, there were 357 new colon cancer only cases in women and 282 in men. For colorectal cancer, the number for men and women altogether was 1040 in the same year. In 2018, there were over 1.8 million new cases worldwide. The Mayo Clinic found in a prospective, two-year multi-site study of CRC patients that 15.5% of patients carried pathogenic germline variants (PGV), using an >80 gene Next Generation Sequencing (NGS) panel. Material and methods: This retrospective study aimed to analyse the estimated prevalence of pathogenic/likely pathogenic germline variants in Estonian colorectal cancer patients using NGS in a routine clinical setting. We gathered five-year data (July 2016-July 2021) of colorectal cancer patients (mostly not selected for age or family history) tested with either Illumina TruSight Cancer (94 genes) or TruSight Hereditary Cancer (113 genes) NGS panels. Results: Three hundred and fourteen NGS analyses were performed due to either CRC or polyposis in anamnesis and/or family anamnesis, including 126 CRC cases and 44 colorectal polyposis cases, while 144 were either healthy family members or had other types of cancers. While a known disease-causing variant was identified in 16.4% of all cancer patients tested, we found that 21.4% of CRC patients had such a variant. Among the 44 colorectal polyps cases MLH1, gene was the most affected one (25%), the second and third most affected genes were MSH2 and CHEK2. Other genes with disease-causing variants found in CRC patients included APC, BLM, BMPR1A, BRCA1, FANCM, MSH6, MUTYH, PMS2, SMAD4, SPINK1 and VHL. Conclusion: Our result give an overview of genetic testing of CRC patients, the prevalence of disease-causing variants and their landscape in Estonia. According to Estonian data, only 2.7-6.1% of CRC patients are genetically tested, which is around ten times less frequently than breast cancer patients and their family members. The diagnostic yield of CRC patients is 21.4%, suggesting that genetic testing will likely improve timely diagnosis and outcomes.

6.
Mol Genet Genomic Med ; 8(4): e1154, 2020 04.
Article in English | MEDLINE | ID: mdl-32022462

ABSTRACT

BACKGROUND: Dihydropteridine reductase (DHPR) is one of the key enzymes for maintaining in the organism the supply of tetrahydrobiopterin (BH4 ), an essential cofactor for aromatic amino acid hydroxylases. Its dysfunction causes the condition of hyperphenylalaninemia together with the lack of neurotransmitters. METHODS: We report a patient with biochemically diagnosed DHPR deficiency, with extensive molecular investigations undertaken to detect variations in quinoid dihydropteridine reductase (QDPR) gene. Sanger sequencing of QDPR coding regions, exome sequencing, QDPR mRNA PCR, and karyotyping were followed by trio genome sequencing. RESULTS: Short-read genome sequencing revealed a homozygous 9-Mb inversion disrupting QDPR. Structural variant breakpoints in chromosome 4 were located to intron 2 of QDPR at Chr4(GRCh38):g.17505522 and in intron 8 of the ACOX3 gene, Chr4(GRCh38):g.8398067). Both nonrelated parents carried the variant in heterozygous state. The inversion was not present in gnomAD structural variant database. CONCLUSION: Identification of the exact breakpoints now allows further straightforward molecular genetic testing of potential carriers of the inversion. This study extends the pathogenic variant spectrum of DHPR deficiency and highlights the role of structural variants in recessive metabolic disorders. To our knowledge, this is the first report on a large, canonical (rather than complex) homozygous pathogenic inversion detected by genome sequencing.


Subject(s)
Chromosome Inversion , Chromosomes, Human, Pair 4/genetics , Homozygote , Phenylketonurias/genetics , Acyl-CoA Oxidase/genetics , Child , Chromosome Breakpoints , Female , Genetic Testing , Humans , Phenylketonurias/pathology , Exome Sequencing
7.
Mol Genet Metab Rep ; 19: 100467, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30963030

ABSTRACT

Blood phenylalanine (Phe) values from the dried blood spots of all Estonian phenylketonuria (PKU) patients have been deposited into a unified electronic laboratory database for eight years, providing an opportunity to assess the adherence of the patients to dietary recommendations over time and to observe patient practices both individually and collectively. Our results demonstrate generally good adherence to clinical and dietary recommendations during the first six years of life, as the percentage of patients with median Phe values fitting under the national recommendation levels were 95%, 84% and 70% in age groups 0-1, 1-2 and 2-6 years, respectively. Conversely, significant deviations occur in the group of 6 to 12 year-olds, mildly decreasing in adolescence and increasing in adulthood (43%, 53% and 57%, respectively). Wide individual differences occurred in all groups, especially in patients with a classical PKU phenotype caused by PAH variants that fully abolish phenylalanine hydroxylase activity. Surprisingly, some of the best dietary adherence was seen in the late-diagnosed PKU patients with poor cognitive functioning. As a rule, the median of Phe values crosses the recommended thresholds in approximately one third to one half of the patients of each age group after the first two years of life.

8.
Eur J Hum Genet ; 27(11): 1649-1658, 2019 11.
Article in English | MEDLINE | ID: mdl-31186545

ABSTRACT

Imprinting disorders (ImpDis) represent a small group of rare congenital diseases primarily affecting growth, development, and the hormonal and metabolic systems. The aim of present study was to identify the prevalence of the ImpDis in Estonia, to describe trends in the live birth prevalence of these disorders between 1998 and 2016, and to compare the results with previously published data. We retrospectively reviewed the records of all Estonian patients since 1998 with both molecularly and clinically diagnosed ImpDis. A prospective study was also conducted, in which all patients with clinical suspicion for an ImpDis were molecularly analyzed. Eighty-seven individuals with ImpDis were identified. Twenty-seven (31%) of them had Prader-Willi syndrome (PWS), 15 (17%) had Angelman syndrome (AS), 15 (17%) had Silver-Russell syndrome (SRS), 12 (14%) had Beckwith-Wiedemann syndrome (BWS), 10 (11%) had pseudo- or pseudopseudohypoparathyroidism, four had central precocious puberty, two had Temple syndrome, one had transient neonatal diabetes mellitus, and one had myoclonus-dystonia syndrome. One third of SRS and BWS cases fulfilled the diagnostic criteria for these disorders, but tested negative for genetic abnormalities. Seventy-six individuals were alive as of January 1, 2018, indicating the total prevalence of ImpDis in Estonia is 5.8/100,000 (95% CI 4.6/100,000-7.2/100,000). The minimum live birth prevalence of all ImpDis in Estonia in 2004-2016 was 1/3,462, PWS 1/13,599, AS 1/27,198, BWS 1/21,154, SRS 1/15,866, and PHP/PPHP 1/27,198. Our results are only partially consistent with previously published data. The worldwide prevalence of SRS and GNAS-gene-related ImpDis is likely underestimated and may be at least three times higher than expected.


Subject(s)
Chromosome Disorders/epidemiology , Chromosome Disorders/genetics , Genomic Imprinting , Adolescent , Adult , Aged , Aged, 80 and over , Angelman Syndrome/epidemiology , Angelman Syndrome/genetics , Beckwith-Wiedemann Syndrome/epidemiology , Beckwith-Wiedemann Syndrome/genetics , Child , Child, Preschool , Chromosome Disorders/diagnosis , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Methylation , Estonia/epidemiology , Humans , Infant , Infant, Newborn , Middle Aged , Prader-Willi Syndrome/epidemiology , Prader-Willi Syndrome/genetics , Prevalence , Prospective Studies , Retrospective Studies , Silver-Russell Syndrome/epidemiology , Silver-Russell Syndrome/genetics , Young Adult
9.
JIMD Rep ; 40: 39-45, 2018.
Article in English | MEDLINE | ID: mdl-28956315

ABSTRACT

The present study provides a retrospective overview of the cohort of phenylketonuria (PKU) patients in Estonia. Based on the available data, the patients clearly cluster into two distinct groups: the patients with late diagnosis and start of therapy (N = 46), who were born before 1993 when the national newborn screening programme was launched, and the screened babies (N = 48) getting their diagnoses at least in a couple of weeks after birth.Altogether 153 independent phenylalanine hydroxylase (PAH) alleles from 92 patients were analysed in the study, wherein 80% of them were carrying the p.Arg408Trp variation, making the relative frequency of this particular variation one of the highest known. Additionally, 15 other different variations in the PAH gene were identified, each with very low incidence, providing ground for phenotypic variability and potential response to BH4 therapy. Genealogical analysis revealed some "hotspots" of the origin of the p.Arg408Trp variation, with especially high density in South-East Estonia. According to our data, the incidence of PKU in Estonia is estimated as 1 in 6,700 newborns.

10.
Mol Genet Metab Rep ; 15: 80-89, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30009132

ABSTRACT

OBJECTIVE: Reaching a genetic diagnosis of mitochondrial disorders (MDs) is challenging due to their broad phenotypic and genotypic heterogeneity. However, there is growing evidence that the use of whole exome sequencing (WES) for diagnosing patients with a clinical suspicion of an MD is effective (39-60%). We aimed to study the effectiveness of WES in clinical practice in Estonia, in patients with an unsolved, but suspected MD. We also show our first results of mtDNA analysis obtained from standard WES reads. METHODS: Retrospective cases were selected from a database of 181 patients whose fibroblast cell cultures had been stored from 2003 to 2013. Prospective cases were selected during the period of 2014-2016 from patients referred to a clinical geneticist in whom an MD was suspected. We scored each patient according to the mitochondrial disease criteria (MDC) (Morava et al., 2006) after re-evaluation of their clinical data, and then performed WES analysis. RESULTS: A total of 28 patients were selected to the study group. A disease-causing variant was found in 16 patients (57%) using WES. An MD was diagnosed in four patients (14%), with variants in the SLC25A4, POLG, SPATA5, and NDUFB11 genes. Other variants found were associated with a neuromuscular disease (SMN1, MYH2, and LMNA genes), neurodegenerative disorder (TSPOAP1, CACNA1A, ALS2, and SCN2A genes), multisystemic disease (EPG5, NKX1-2, ATRX, and ABCC6 genes), and one in an isolated cardiomyopathy causing gene (MYBPC3). The mtDNA point mutation was found in the MT-ATP6 gene of one patient upon mtDNA analysis. CONCLUSIONS: The diagnostic yield of WES in our cohort was 57%, proving to be a very good effectiveness. However, MDs were found in only 14% of the patients. We suggest WES analysis as a first-tier method in clinical genetic practice for children with any multisystem, neurological, and/or neuromuscular problem, as nuclear DNA variants are more common in children with MDs; a large number of patients harbor disease-causing variants in genes other than the mitochondria-related ones, and the clinical presentation might not always point towards an MD. We have also successfully conducted analysis of mtDNA from standard WES reads, providing further evidence that this method could be routinely used in the future.

SELECTION OF CITATIONS
SEARCH DETAIL