Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Cell ; 176(6): 1310-1324.e10, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827684

ABSTRACT

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Subject(s)
Chromosomes, Human, Pair 17 , Mutation , Abnormalities, Multiple/genetics , Chromosome Breakpoints , Chromosome Disorders/genetics , Chromosome Duplication/genetics , DNA Copy Number Variations , DNA Repair/genetics , DNA Replication , Gene Rearrangement , Genome, Human , Genomic Structural Variation , Humans , INDEL Mutation , Models, Genetic , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA/methods , Smith-Magenis Syndrome/genetics
2.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29681454

ABSTRACT

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Lung Neoplasms/pathology , Small Molecule Libraries/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cytochrome P450 Family 4/deficiency , Cytochrome P450 Family 4/genetics , Drug Discovery , G1 Phase Cell Cycle Checkpoints/drug effects , Glucocorticoids/pharmacology , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mutation , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
3.
Cell ; 168(5): 830-842.e7, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235197

ABSTRACT

De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.


Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Genomic Instability , Mutation , Chromosome Breakpoints , Chromosome Duplication , DNA Replication , Embryonic Development , Female , Gametogenesis , Humans , Male
4.
Cell ; 157(3): 636-50, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766809

ABSTRACT

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Subject(s)
Central Nervous System Diseases/genetics , Mutation, Missense , Nuclear Proteins/metabolism , Peripheral Nervous System Diseases/genetics , Phosphotransferases/metabolism , RNA, Transfer/metabolism , Transcription Factors/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Central Nervous System Diseases/pathology , Cerebrum/pathology , Child, Preschool , Endoribonucleases/metabolism , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mice , Mice, Inbred CBA , Microcephaly/genetics , Peripheral Nervous System Diseases/pathology , RNA, Transfer/genetics , RNA-Binding Proteins
5.
Nature ; 583(7814): 83-89, 2020 07.
Article in English | MEDLINE | ID: mdl-32460305

ABSTRACT

A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0-11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing.


Subject(s)
Genetic Variation , Genome, Human/genetics , Whole Genome Sequencing , Alleles , Case-Control Studies , Epigenesis, Genetic , Female , Gene Dosage/genetics , Genetics, Population , High-Throughput Nucleotide Sequencing , Humans , Male , Molecular Sequence Annotation , Quantitative Trait Loci , Racial Groups/genetics , Software
6.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934770

ABSTRACT

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Subject(s)
Kinesins , Osteogenesis Imperfecta , Animals , Humans , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Carrier Proteins/genetics , Down-Regulation , Kinesins/genetics , Kinesins/metabolism , NIH 3T3 Cells , Proteomics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
7.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35385699

ABSTRACT

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Transcriptome , Humans , Lung , National Heart, Lung, and Blood Institute (U.S.) , Pulmonary Disease, Chronic Obstructive/genetics , Risk Factors , United States/epidemiology
8.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34582790

ABSTRACT

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Subject(s)
Genomics/methods , Mutation , Neurodevelopmental Disorders/epidemiology , Phenotype , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Prevalence , Turkey/epidemiology , Exome Sequencing , Young Adult
9.
Am J Hum Genet ; 108(9): 1710-1724, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450031

ABSTRACT

Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.


Subject(s)
Bone and Bones/metabolism , Coat Protein Complex I/genetics , Coatomer Protein/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Osteoporosis/genetics , Animals , Ascorbic Acid/pharmacology , Bone and Bones/drug effects , Bone and Bones/pathology , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Coat Protein Complex I/deficiency , Coatomer Protein/chemistry , Coatomer Protein/deficiency , Collagen Type I/genetics , Collagen Type I/metabolism , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Embryo, Nonmammalian , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Developmental , Golgi Apparatus , Haploinsufficiency , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mice , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Severity of Illness Index , Zebrafish
10.
Nature ; 553(7686): 77-81, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300007

ABSTRACT

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , Cercocebus atys/genetics , Cercocebus atys/virology , Genetic Predisposition to Disease , Genome/genetics , Host Specificity/genetics , Simian Immunodeficiency Virus , Acquired Immunodeficiency Syndrome/virology , Amino Acid Sequence , Animals , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cercocebus atys/immunology , Exons/genetics , Female , Frameshift Mutation/genetics , Genetic Variation , Genomics , HIV/pathogenicity , Humans , Macaca/virology , Sequence Deletion , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Species Specificity , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Transcriptome/genetics , Whole Genome Sequencing
11.
Am J Hum Genet ; 106(1): 112-120, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883642

ABSTRACT

Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∼38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∼10% and ∼1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.


Subject(s)
Asian People/genetics , Black People/genetics , C-Reactive Protein/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , White People/genetics , Whole Genome Sequencing/methods , Cohort Studies , Gene Frequency , Genome-Wide Association Study , Humans , Linkage Disequilibrium
12.
Genome Res ; 30(6): 826-834, 2020 06.
Article in English | MEDLINE | ID: mdl-32461224

ABSTRACT

Mutation is the ultimate source of all genetic novelty and the cause of heritable genetic disorders. Mutational burden has been linked to complex disease, including neurodevelopmental disorders such as schizophrenia and autism. The rate of mutation is a fundamental genomic parameter and direct estimates of this parameter have been enabled by accurate comparisons of whole-genome sequences between parents and offspring. Studies in humans have revealed that the paternal age at conception explains most of the variation in mutation rate: Each additional year of paternal age in humans leads to approximately 1.5 additional inherited mutations. Here, we present an estimate of the de novo mutation rate in the rhesus macaque (Macaca mulatta) using whole-genome sequence data from 32 individuals in four large pedigrees. We estimated an average mutation rate of 0.58 × 10-8 per base pair per generation (at an average parental age of 7.5 yr), much lower than found in direct estimates from great apes. As in humans, older macaque fathers transmit more mutations to their offspring, increasing the per generation mutation rate by 4.27 × 10-10 per base pair per year. We found that the rate of mutation accumulation after puberty is similar between macaques and humans, but that a smaller number of mutations accumulate before puberty in macaques. We additionally investigated the role of paternal age on offspring sociability, a proxy for normal neurodevelopment, by studying 203 male macaques in large social groups.


Subject(s)
Behavior, Animal , Germ-Line Mutation , Mutation Accumulation , Paternal Age , Prenatal Exposure Delayed Effects/genetics , Social Skills , Age Factors , Animals , Female , Humans , Macaca mulatta , Male , Mutation Rate , Pregnancy , Species Specificity
13.
Genome Res ; 30(12): 1716-1726, 2020 12.
Article in English | MEDLINE | ID: mdl-33208454

ABSTRACT

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Subject(s)
Sequence Analysis, DNA/veterinary , X Chromosome/genetics , Y Chromosome/genetics , Animals , Cattle , Cell Lineage , Crossing Over, Genetic , Evolution, Molecular , Female , Gene Amplification , Humans , Male , Mice , Organ Specificity , Testis/chemistry
14.
PLoS Biol ; 18(12): e3000954, 2020 12.
Article in English | MEDLINE | ID: mdl-33270638

ABSTRACT

Our understanding of the evolutionary history of primates is undergoing continual revision due to ongoing genome sequencing efforts. Bolstered by growing fossil evidence, these data have led to increased acceptance of once controversial hypotheses regarding phylogenetic relationships, hybridization and introgression, and the biogeographical history of primate groups. Among these findings is a pattern of recent introgression between species within all major primate groups examined to date, though little is known about introgression deeper in time. To address this and other phylogenetic questions, here, we present new reference genome assemblies for 3 Old World monkey (OWM) species: Colobus angolensis ssp. palliatus (the black and white colobus), Macaca nemestrina (southern pig-tailed macaque), and Mandrillus leucophaeus (the drill). We combine these data with 23 additional primate genomes to estimate both the species tree and individual gene trees using thousands of loci. While our species tree is largely consistent with previous phylogenetic hypotheses, the gene trees reveal high levels of genealogical discordance associated with multiple primate radiations. We use strongly asymmetric patterns of gene tree discordance around specific branches to identify multiple instances of introgression between ancestral primate lineages. In addition, we exploit recent fossil evidence to perform fossil-calibrated molecular dating analyses across the tree. Taken together, our genome-wide data help to resolve multiple contentious sets of relationships among primates, while also providing insight into the biological processes and technical artifacts that led to the disagreements in the first place.


Subject(s)
Genetic Introgression/genetics , Primates/genetics , Animals , Biological Evolution , Cercopithecidae/genetics , Computational Biology/methods , Databases, Genetic , Fossils , Gene Flow/genetics , Genome/genetics , Models, Genetic , Phylogeny , Sequence Analysis, DNA/methods
16.
J Allergy Clin Immunol ; 149(2): 758-766, 2022 02.
Article in English | MEDLINE | ID: mdl-34329649

ABSTRACT

BACKGROUND: Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS: Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS: PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.


Subject(s)
Lymphoproliferative Disorders/genetics , Adolescent , Autoimmunity , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Testing , Herpesvirus 4, Human/isolation & purification , Humans , Immunity/genetics , Infant , Lymphoproliferative Disorders/etiology , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/mortality , Male , Exome Sequencing , Young Adult
17.
Hum Mutat ; 43(12): 2033-2053, 2022 12.
Article in English | MEDLINE | ID: mdl-36054313

ABSTRACT

Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Humans , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Endoribonucleases , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phosphoprotein Phosphatases , Qa-SNARE Proteins , RNA-Binding Proteins , Sphingomyelin Phosphodiesterase
18.
Hum Mutat ; 43(7): 900-918, 2022 07.
Article in English | MEDLINE | ID: mdl-35344616

ABSTRACT

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Subject(s)
Craniofacial Abnormalities , Dwarfism , Limb Deformities, Congenital , Receptor Tyrosine Kinase-like Orphan Receptors , Urogenital Abnormalities , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Dwarfism/diagnosis , Dwarfism/genetics , Genes, Recessive , Humans , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Male , Phenotype , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics
19.
Am J Hum Genet ; 105(5): 974-986, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31668702

ABSTRACT

The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Databases, Genetic , Exome/genetics , Genomics/methods , Humans , Pedigree , Phenotype , Exome Sequencing/methods
20.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31230720

ABSTRACT

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Subject(s)
Arthrogryposis/genetics , Arthrogryposis/pathology , DNA Copy Number Variations , Genetic Markers , Genomics/methods , Multifactorial Inheritance/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Connectin/genetics , Female , Gestational Age , Humans , Infant , Infant, Newborn , Male , Mosaicism , Pedigree , Ryanodine Receptor Calcium Release Channel/genetics , Vesicular Transport Proteins/genetics , Exome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL