Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Am Chem Soc ; 145(9): 4957-4963, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36883326

ABSTRACT

Mitragyna speciosa ("kratom") is used as a natural remedy for pain and management of opioid dependence. The pharmacological properties of kratom have been linked to a complex mixture of monoterpene indole alkaloids, most notably mitragynine. Here, we report the central biosynthetic steps responsible for the scaffold formation of mitragynine and related corynanthe-type alkaloids. We illuminate the mechanistic basis by which the key stereogenic center of this scaffold is formed. These discoveries were leveraged for the enzymatic production of mitragynine, the C-20 epimer speciogynine, and fluorinated analogues.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Stereoisomerism , Monoterpenes
2.
J Nat Prod ; 86(4): 1042-1052, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36913648

ABSTRACT

The monoterpene indole alkaloid (MIA) mitragynine has garnered attention as a potential treatment for pain, opioid use disorder, and opioid withdrawal because of its combined pharmacology at opioid and adrenergic receptors in humans. This alkaloid is unique to Mitragyna speciosa (kratom), which accumulates over 50 MIAs and oxindole alkaloids in its leaves. Quantification of 10 targeted alkaloids from several tissue types and cultivars of  M. speciosa revealed that mitragynine accumulation was highest in leaves, followed by stipules and stems, but was absent, along with other alkaloids, in roots. While mitragynine is the predominant alkaloid in mature leaves, juvenile leaves accumulate higher amounts of corynantheidine and speciociliatine. Interestingly, corynantheidine has an inverse relationship with mitragynine accumulation throughout leaf development. Characterization of various cultivars of M. speciosa indicated altered alkaloidal profiles ranging from undetectable to high levels of mitragynine. DNA barcoding and phylogenetic analysis using ribosomal ITS sequences revealed polymorphisms leading M. speciosa cultivars having lower mitragynine content to group with other mitragyna species, suggesting interspecific hybridization events. Root transcriptome analysis of low- and high-mitragynine-producing cultivars indicated significant differences in gene expression and revealed allelic variation, further supporting that hybridization events may have impacted the alkaloid profile of M. speciosa.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Humans , Mitragyna/genetics , Analgesics, Opioid , Oxindoles , Phylogeny , Indoles
3.
Plant Physiol ; 175(1): 36-50, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28701351

ABSTRACT

Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato (Solanum lycopersicum), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3', and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petuniaaxillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris, tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris, PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3' position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3' position in tomato, is absent in P. axillaris Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis.


Subject(s)
Acyltransferases/metabolism , Carbohydrate Metabolism , Petunia/enzymology , Trichomes/metabolism , Solanum lycopersicum/enzymology , Plant Proteins/metabolism
4.
Plant J ; 78(6): 1022-33, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24689783

ABSTRACT

The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs.


Subject(s)
Chloroplasts/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/physiology , Plant Proteins/physiology , Solanum lycopersicum/genetics , Transcription Factors/genetics , Amino Acid Sequence , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Cloning, Molecular , Fruit/genetics , Fruit/growth & development , Fruit/ultrastructure , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/ultrastructure , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Alignment , Transcription Factors/metabolism
5.
Plant Physiol ; 159(3): 945-60, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22623518

ABSTRACT

Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells.


Subject(s)
Genetic Pleiotropy , Mutation/genetics , Plant Epidermis/cytology , Plant Epidermis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Alleles , Anthocyanins/metabolism , Arabidopsis/metabolism , Cell Membrane Permeability , Chlorophyll/metabolism , Chromosome Mapping , Fruit/genetics , Fruit/metabolism , Fruit/ultrastructure , Gene Expression Regulation, Plant , Gene Silencing , Genetic Association Studies , Genetic Loci/genetics , Lignin/metabolism , Solanum lycopersicum/cytology , Solanum lycopersicum/genetics , Solanum lycopersicum/ultrastructure , Membrane Lipids/metabolism , Phenotype , Phylogeny , Plant Epidermis/genetics , Plant Epidermis/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Roots/metabolism , Surface Properties , Waxes/metabolism
6.
Front Plant Sci ; 14: 1151347, 2023.
Article in English | MEDLINE | ID: mdl-37324668

ABSTRACT

The Gametophytic Self-Incompatibility (GSI) system in diploid potato (Solanum tuberosum L.) poses a substantial barrier in diploid potato breeding by hindering the generation of inbred lines. One solution is gene editing to generate self-compatible diploid potatoes which will allow for the generation of elite inbred lines with fixed favorable alleles and heterotic potential. The S-RNase and HT genes have been shown previously to contribute to GSI in the Solanaceae family and self-compatible S. tuberosum lines have been generated by knocking out S-RNase gene with CRISPR-Cas9 gene editing. This study employed CRISPR-Cas9 to knockout HT-B either individually or in concert with S-RNase in the diploid self-incompatible S. tuberosum clone DRH-195. Using mature seed formation from self-pollinated fruit as the defining characteristic of self-compatibility, HT-B-only knockouts produced little or no seed. In contrast, double knockout lines of HT-B and S-RNase displayed levels of seed production that were up to three times higher than observed in the S-RNase-only knockout, indicating a synergistic effect between HT-B and S-RNase in self-compatibility in diploid potato. This contrasts with compatible cross-pollinations, where S-RNase and HT-B did not have a significant effect on seed set. Contradictory to the traditional GSI model, self-incompatible lines displayed pollen tube growth reaching the ovary, yet ovules failed to develop into seeds indicating a potential late-acting self-incompatibility in DRH-195. Germplasm generated from this study will serve as a valuable resource for diploid potato breeding.

7.
Front Plant Sci ; 14: 1284573, 2023.
Article in English | MEDLINE | ID: mdl-38078110

ABSTRACT

Camelina sativa, a member of the Brassicaceae, is a low-cost, renewable oilseed crop that produces seeds up to 40% oil by weight with high potential for use in food, feed, and biofuel applications. Camelina seeds contain high levels of the fatty acids α-linolenic acid (C18:3), linoleic acid (C18:2), oleic acid (C18:1), and gondoic acid (C20:1), which have high nutritional and industrial value. The impact of climate change, especially increased frequency and amplitude of heat waves, poses a serious threat to crop productivity. In this study, we evaluated the effect of elevated temperatures post-anthesis on the developing seeds of C. sativa and performed physiological, morphological, and chemical characterizations at 7, 14, 21, and 28 days post-anthesis (DPA), as well as at maturity. While the seed oil accumulation peaked at 21 DPA under control conditions, reaching 406mg/g dry weight, under heat stress it was only 186mg/g. Physiologically, transpiration rate (E) and internal CO2 concentration (Ci) increased between 2 to 9 days post-stress imposition and overall net photosynthesis was impaired. Seed yield, seed weight, and oil content reduced by 84.5%, 38.5% and 54.1% respectively. We demonstrate that post-anthesis heat stress causes severe yield losses and developmental plasticity in fatty acid accumulation in oilseeds.

8.
Front Plant Sci ; 14: 1271625, 2023.
Article in English | MEDLINE | ID: mdl-38034564

ABSTRACT

Camelina sativa (L.) Crantz, a member of the Brassicaceae, has potential as a biofuel feedstock which is attributable to the production of fatty acids in its seeds, its fast growth cycle, and low input requirements. While a genome assembly is available for camelina, it was generated from short sequence reads and is thus highly fragmented in nature. Using long read sequences, we generated a chromosome-scale, highly contiguous genome assembly (644,491,969 bp) for the spring biotype cultivar 'Suneson' with an N50 contig length of 12,031,512 bp and a scaffold N50 length of 32,184,682 bp. Annotation of protein-coding genes revealed 91,877 genes that encode 133,355 gene models. We identified a total of 4,467 genes that were significantly up-regulated under cold stress which were enriched in gene ontology terms associated with "response to cold" and "response to abiotic stress". Coexpression analyses revealed multiple coexpression modules that were enriched in genes differentially expressed following cold stress that had putative functions involved in stress adaptation, specifically within the plastid. With access to a highly contiguous genome assembly, comparative analyses with Arabidopsis thaliana revealed 23,625 A. thaliana genes syntenic with 45,453 Suneson genes. Of these, 24,960 Suneson genes were syntenic to 8,320 A. thaliana genes reflecting a 3 camelina homeolog to 1 Arabidopsis gene relationship and retention of all three homeologs. Some of the retained triplicated homeologs showed conserved gene expression patterns under control and cold-stressed conditions whereas other triplicated homeologs displayed diverged expression patterns revealing sub- and neo-functionalization of the homeologs at the transcription level. Access to the chromosome-scale assembly of Suneson will enable both basic and applied research efforts in the improvement of camelina as a sustainable biofuel feedstock.

9.
Front Genome Ed ; 4: 830178, 2022.
Article in English | MEDLINE | ID: mdl-35141701

ABSTRACT

Gene-editing by CRISPR/Cas systems has revolutionized plant biology by serving as a functional genomics tool. It has tremendously advanced plant breeding and crop improvement by accelerating the development of improved cultivars, creating genetic variability, and aiding in domestication of wild and orphan crops. Gene-editing is a rapidly evolving field. Several advancements include development of different Cas effectors with increased target range, efficacy, and enhanced capacity for precise DNA modifications with base editing and prime editing. The existing toolbox of various CRISPR reagents facilitate gene knockouts, targeted gene insertions, precise base substitutions, and multiplexing. However, the major challenge in plant genome-editing remains the efficient delivery of these reagents into plant cells. Plants have larger and more complex genome structures compared to other living systems due to the common occurrence of polyploidy and other genome re-arrangements. Further, rigid cell walls surrounding plant cells deter the entry of any foreign biomolecules. Unfortunately, genetic transformation to deliver gene-editing reagents has been established only in a limited number of plant species. Recently, there has been significant progress in CRISPR reagents delivery in plants. This review focuses on exploring these delivery mechanisms categorized into Agrobacterium-mediated delivery and breakthroughs, particle bombardment-based delivery of biomolecules and recent improvements, and protoplasts, a versatile system for gene-editing and regeneration in plants. The ultimate goal in plant gene-editing is to establish highly efficient and genotype-independent reagent delivery mechanisms for editing multiple targets simultaneously and achieve DNA-free gene-edited plants at scale.

10.
Sci Rep ; 12(1): 13201, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915209

ABSTRACT

Scutellaria baicalensis is a well-studied medicinal plant belonging to the Lamiaceae family, prized for the unique 4'-deoxyflavones produced in its roots. In this study, three native species to the Americas, S. lateriflora, S. arenicola, and S. integrifolia were identified by DNA barcoding, and phylogenetic relationships were established with other economically important Lamiaceae members. Furthermore, flavone profiles of native species were explored. 4'-deoxyflavones including baicalein, baicalin, wogonin, wogonoside, chrysin and 4'-hydroxyflavones, scutellarein, scutellarin, and apigenin, were quantified from leaves, stems, and roots. Qualitative, and quantitative differences were identified in their flavone profiles along with characteristic tissue-specific accumulation. 4'-deoxyflavones accumulated in relatively high concentrations in root tissues compared to aerial tissues in all species except S. lateriflora. Baicalin, the most abundant 4'-deoxyflavone detected, was localized in the roots of S. baicalensis and leaves of S. lateriflora, indicating differential accumulation patterns between the species. S. arenicola and S. integrifolia are phylogenetically closely related with similar flavone profiles and distribution patterns. Additionally, the S. arenicola leaf flavone profile was dominated by two major unknown peaks, identified using LC-MS/MS to most likely be luteolin-7-O-glucuronide and 5,7,2'-trihydroxy-6-methoxyflavone 7-O-glucuronide. Collectively, results presented in this study suggest an evolutionary divergence of flavonoid metabolic pathway in the Scutellaria genus of Lamiaceae.


Subject(s)
Flavanones , Flavones , Scutellaria , Chromatography, Liquid , Flavanones/metabolism , Flavones/metabolism , Flavonoids/metabolism , Phylogeny , Plant Roots/metabolism , Scutellaria baicalensis/metabolism , Tandem Mass Spectrometry
11.
Front Plant Sci ; 11: 637159, 2020.
Article in English | MEDLINE | ID: mdl-33519884

ABSTRACT

The year 2020 marks a decade since the first gene-edited plants were generated using homing endonucleases and zinc finger nucleases. The advent of CRISPR/Cas9 for gene-editing in 2012 was a major science breakthrough that revolutionized both basic and applied research in various organisms including plants and consequently honored with "The Nobel Prize in Chemistry, 2020." CRISPR technology is a rapidly evolving field and multiple CRISPR-Cas derived reagents collectively offer a wide range of applications for gene-editing and beyond. While most of these technological advances are successfully adopted in plants to advance functional genomics research and development of innovative crops, others await optimization. One of the biggest bottlenecks in plant gene-editing has been the delivery of gene-editing reagents, since genetic transformation methods are only established in a limited number of species. Recently, alternative methods of delivering CRISPR reagents to plants are being explored. This review mainly focuses on the most recent advances in plant gene-editing including (1) the current Cas effectors and Cas variants with a wide target range, reduced size and increased specificity along with tissue specific genome editing tool kit (2) cytosine, adenine, and glycosylase base editors that can precisely install all possible transition and transversion mutations in target sites (3) prime editing that can directly copy the desired edit into target DNA by search and replace method and (4) CRISPR delivery mechanisms for plant gene-editing that bypass tissue culture and regeneration procedures including de novo meristem induction, delivery using viral vectors and prospects of nanotechnology-based approaches.

12.
Front Plant Sci ; 10: 376, 2019.
Article in English | MEDLINE | ID: mdl-31001300

ABSTRACT

Potato breeding can be redirected to a diploid inbred/F1 hybrid variety breeding strategy if self-compatibility can be introduced into diploid germplasm. However, the majority of diploid potato clones (Solanum spp.) possess gametophytic self-incompatibility that is primarily controlled by a single multiallelic locus called the S-locus which is composed of tightly linked genes, S-RNase (S-locus RNase) and multiple SLFs (S-locus F-box proteins), which are expressed in the style and pollen, respectively. Using S-RNase genes known to function in the Solanaceae gametophytic SI mechanism, we identified S-RNase alleles with flower-specific expression in two diploid self-incompatible potato lines using genome resequencing data. Consistent with the location of the S-locus in potato, we genetically mapped the S-RNase gene using a segregating population to a region of low recombination within the pericentromere of chromosome 1. To generate self-compatible diploid potato lines, a dual single-guide RNA (sgRNA) strategy was used to target conserved exonic regions of the S-RNase gene and generate targeted knockouts (KOs) using a Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (Cas9) approach. Self-compatibility was achieved in nine S-RNase KO T0 lines which contained bi-allelic and homozygous deletions/insertions in both genotypes, transmitting self compatibility to T1 progeny. This study demonstrates an efficient approach to achieve stable, consistent self-compatibility through S-RNase KO for use in diploid potato breeding approaches.

13.
Methods Mol Biol ; 1917: 183-201, 2019.
Article in English | MEDLINE | ID: mdl-30610637

ABSTRACT

Cultivated potato, Solanum tuberosum Group Tuberosum L. (2n = 4x = 48) is a heterozygous tetraploid crop that is clonally propagated, thereby resulting in identical genotypes. Due to the lack of sexual reproduction and its concomitant segregation of alleles, genetic engineering is an efficient way of introducing crop improvement traits in potato. In recent years, genome-editing via the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system for targeted genome modifications has emerged as the most powerful method due to the ease in designing and construction of gene-specific single guide RNA (sgRNA) vectors. These sgRNA vectors are easily reprogrammable to direct Streptococcus pyogenes Cas9 (SpCas9) to generate double stranded breaks (DSBs) in the target genomes that are then repaired by the cell via the error-prone non-homologous end-joining (NHEJ) pathway or by precise homologous recombination (HR) pathway. CRISPR/Cas9 technology has been successfully implemented in potato for targeted mutagenesis to generate knockout mutations (by means of NHEJ) as well as gene targeting to edit an endogenous gene (by HR). In this chapter, we describe procedures for designing sgRNAs, protocols to clone sgRNAs for CRISPR/Cas9 constructs to generate knockouts, design of donor repair templates and use geminivirus replicons (GVRs) to facilitate gene-editing by HR in potato. We also describe tissue culture procedures in potato for Agrobacterium-mediated transformation to generate gene-edited events along with their molecular characterization.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Solanum tuberosum/genetics , Agrobacterium/genetics , RNA, Guide, Kinetoplastida/genetics , Tissue Culture Techniques , Transformation, Genetic/genetics
14.
Front Plant Sci ; 10: 110, 2019.
Article in English | MEDLINE | ID: mdl-30800139

ABSTRACT

Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.

15.
PLoS One ; 13(11): e0206055, 2018.
Article in English | MEDLINE | ID: mdl-30408049

ABSTRACT

Crop genetic engineering involves transformation in which transgenic plants are regenerated through tissue culture manipulations that can elicit somaclonal variation due to mutations, translocations, and/or epigenetic alterations. Here, we report on alterations in the transcriptome in a panel of transgenic potato plants engineered to be herbicide resistant. Using an inbred diploid potato clone (DMRH S5 28-5), ten single-insert transgenic lines derived from independent Agrobacterium-mediated transformation events were selected for herbicide resistance using an allelic variant of acetolactate synthase (mALS1). Expression abundances of the single-copy mALS1 transgene varied in individual transgenic lines was correlated with the level of phenotypic herbicide resistance, suggesting the importance of transgene expression in transgenic performance. Using RNA-sequencing, differentially expressed genes were identified with the proportion of genes up-regulated significantly higher than down-regulated genes in the panel, suggesting a differential impact of the plant transformation on gene expression activation compared to repression. Not only were transcription factors among the differentially expressed genes but specific transcription factor binding sites were also enriched in promoter regions of differentially expressed genes in transgenic lines, linking transcriptomic variation with specific transcription factor activity. Collectively, these results provide an improved understanding of transcriptomic variability caused by plant transformation.


Subject(s)
Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plants, Genetically Modified/growth & development , Solanum tuberosum/growth & development , Transcriptome/genetics , Transformation, Genetic , Transgenes/genetics
16.
Front Plant Sci ; 9: 1607, 2018.
Article in English | MEDLINE | ID: mdl-30483283

ABSTRACT

Genome-editing has revolutionized biology. When coupled with a recently streamlined regulatory process by the U.S. Department of Agriculture and the potential to generate transgene-free varieties, genome-editing provides a new avenue for crop improvement. For heterozygous, polyploid and vegetatively propagated crops such as cultivated potato, Solanum tuberosum Group Tuberosum L., genome-editing presents tremendous opportunities for trait improvement. In potato, traits such as improved resistance to cold-induced sweetening, processing efficiency, herbicide tolerance, modified starch quality and self-incompatibility have been targeted utilizing CRISPR/Cas9 and TALEN reagents in diploid and tetraploid clones. However, limited progress has been made in other such crops including sweetpotato, strawberry, grapes, citrus, banana etc., In this review we summarize the developments in genome-editing platforms, delivery mechanisms applicable to plants and then discuss the recent developments in regulation of genome-edited crops in the United States and The European Union. Next, we provide insight into the challenges of genome-editing in clonally propagated polyploid crops, their current status for trait improvement with future prospects focused on potato, a global food security crop.

SELECTION OF CITATIONS
SEARCH DETAIL