Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34290083

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Subject(s)
Long-Term Synaptic Depression/physiology , Neurons/physiology , Protein Tyrosine Phosphatases, Non-Receptor/physiology , Receptors, Metabotropic Glutamate/physiology , Reelin Protein/physiology , 2-Amino-5-phosphonovalerate/pharmacology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Calcium/physiology , Cells, Cultured , Cerebral Cortex/cytology , Enzyme Induction/drug effects , Long-Term Synaptic Depression/drug effects , Memory/physiology , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mice , Nerve Degeneration/physiopathology , Neurons/drug effects , Patch-Clamp Techniques , Phosphorylation/drug effects , Picrotoxin/pharmacology , Protein Processing, Post-Translational/drug effects , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Receptors, Metabotropic Glutamate/agonists , Recombinant Proteins/metabolism , Reelin Protein/deficiency , Reelin Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL