Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Chem ; 92(18): 12250-12256, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32822156

ABSTRACT

Chitosan is a biodegradable, antibacterial, and nontoxic biopolymer used in a wide range of applications including biotechnology, pharmacy, and medicine. The physicochemical and biological properties of chitosan have been associated with parameters such as the degree of polymerization (DP) and the fraction of acetylation (FA). New methods are being developed to yield chitosans of specific acetylation patterns, and, recently, a correlation between biological activity and the distribution of the acetylated units (PA: pattern of acetylation) has been demonstrated. Although there are numerous well-established methods for the determination of DP and FA values, this is not the case for PA. The methods available are either not straightforward or not sensitive enough, limiting their use for routine analysis. In this study, we demonstrate that by applying HOmodecoupled Band-Selective (HOBS) decoupling NMR on signals assigned by multidimensional Pure Shift NMR methods, PA can be easily and accurately determined on various chitosan samples. This novel methodology-easily implemented for routine analysis-could become a standard for chitosan PA assessment. In addition, by applying Spectral Aliased Pure Shift HSQC, the analysis was enhanced with the determination of triads.


Subject(s)
Chitosan/chemical synthesis , Acetylation , Carbohydrate Conformation , Chitosan/analysis , Magnetic Resonance Spectroscopy
2.
Gels ; 9(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998937

ABSTRACT

Skin wound healing is a complex biological process of tissue regeneration in which the wound dressing is crucial for rapid healing; it must protect the wound keep an adequate level of moisture and prevent infections. Alginate (AL), a polysaccharide from brown algae, has been extensively studied for wound treatment, and aloe vera gels (AVGs) have also been used in the treatment of skin. The AVG main bioactive polysaccharide was combined with AL for the preparation of membranes. Two-dimensional membranes were prepared by casting and, for comparison, transparent nanoparticle 3D membranes were produced by high-intensity ultrasonication followed by ionotropic crosslinking. The effects of the amount of AVG, ionotropic gelation, and the structure (2D or 3D) of the AL-AVG membranes were compared. Scanning electron microscopy (SEM) showed higher surface roughness on 3D membranes. Three-dimensional membranes showed a higher swelling ratio, and swelling increased with AVG content and decreased with higher calcium concentration and longer gelation times. The degradation of the membranes was evaluated with and without a lysozyme at pH 5.5, 7.5, and 8.5, to simulate different skin conditions; the results evidence that pH had a higher effect than the enzyme. The cytotoxicity of the membranes was evaluated with ATCC CCL 163 and ATCC CCL 81 cells, and an excellent biocompatibility of both cell types (>90% of cell viability after 48 h incubation) was observed for all AL-AVG membranes.

3.
Polymers (Basel) ; 13(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34372018

ABSTRACT

Chitin is a structural polysaccharide that is found in crustaceans, insects, fungi and some yeasts. Chitin deacetylation produces chitosan, a well-studied biopolymer with reported chemical and biological properties for diverse potential applications for drug delivery, metal ion absorption, scaffolds and tissue engineering. Most known properties of chitosan have been determined from samples obtained from a variety of sources and in different conditions, this is, from chitosans with a wide range of degrees of N-acetylation (DA) and molecular weight (MW). However, as for any copolymer, the physicochemical and mechanical characteristics of chitosan highly depend on their monomer composition (DA) and chain size (MW). This work presents a simple methodology to produce chitosans with specific and predictive DA and MW. Reaction with acetic anhydride proved to be an efficient method to control the acetylation of chitosan, DAs between 10.6% and 50.6% were reproducibly obtained. In addition to this, MWs of chitosan chains were reduced in a controlled manner in two ways, by ultrasound and by acidic hydrolysis at different temperatures, samples with MWs between 130 kDa and 1300 kDa were obtained. DAs were determined by 1H-NMR and MWs by gel permeation chromatography.

4.
Polymers (Basel) ; 11(8)2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31357570

ABSTRACT

Sacha inchi oil is rich in essential and non-essential fatty acids and other types of bioactive agents like tocopherols and polyphenolic compounds, which are very well-known antioxidants. In this study, the encapsulation of sacha inchi oil in alginate (AL) and chitosan (CS) nanoparticles was achieved with the assistance of high-intensity ultrasound. Nanoemulsion is the most effective delivery and high stability system for lipophilic bioactive agents. Chitosan and surfactant concentrations were varied to study their effect on particle formulations. Size, zeta-potential, polydispersity, and stability of particles were determined in time to optimize the preparation conditions. Sacha inchi oil encapsulated in AL-CS nanoparticles showed a higher loading efficiency and stability for short and long periods compared with other vegetable oils such as olive and soybean. Also, because of the types of tocopherols present in sacha inchi oil (γ- and δ-tocopherols), a much higher antioxidant activity (95% of radical reduction in 15 min) was found in comparison with nanocapsules with olive oil, which contain α-tocopherols. The particles showed high efficiency of protein loading at high concentration of bovine serum albumin (BSA) and a low rate of leaching profiles in various testing media like simulated gastric and intestinal fluids with/without enzymes, that is, pepsin 0.1% (w/v) and pancreatin 0.1% (w/v), respectively.

5.
Biomacromolecules ; 7(12): 3345-55, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17154462

ABSTRACT

Natural biodegradable polymers were processed by different techniques for the production of porous structures for tissue engineering scaffolds. Potato, corn, and sweet potato starches and chitosan, as well as blends of these, were characterized and used in the experiments. The techniques used to produce the porous structures included a novel solvent-exchange phase separation technique and the well-established thermally induced phase separation method. Characterization of the open pore structures was performed by measuring pore size distribution, density, and porosity of the samples. A wide range of pore structures ranging from 1 to 400 microm were obtained. The mechanisms of pore formation are discussed for starch and chitosan scaffolds. Pore morphology in starch scaffolds seemed to be determined by the initial freezing temperature/freezing rate, whereas in chitosan scaffolds the shape and size of pores may have been determined by the processing route used. The mechanical properties of the scaffolds were assessed by indentation tests, showing that the indentation collapse strength depends on the pore geometry and the material type. Bioactivity and degradation of the potential scaffolds were assessed by immersion in simulated body fluid.


Subject(s)
Chitosan/chemistry , Starch/chemistry , Tissue Engineering/methods , Amylopectin/chemistry , Amylose , Carbohydrate Conformation , Carbohydrate Sequence , Microscopy, Electron, Scanning , Models, Molecular , Molecular Sequence Data , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL