Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Mol Genet Metab ; 142(3): 108497, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763041

ABSTRACT

Krabbe disease (KD) is a rare inherited demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase. Most patients with KD exhibit fatal cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before the age of 2-4 years. We have previously reported that primary OLs isolated from the brains of twitcher (twi) mice, an authentic mouse model of KD, have cell-autonomous developmental defects and undergo apoptotic death accompanied by abnormal accumulation of psychosine, an endogenous cytotoxic lyso-derivative of GalCer. In this study, we aimed to investigate the effects of the preclinical promyelinating drugs clemastine and Sob-AM2 on KD OL pathologies using primary OLs isolated from the brains of twi mice. Both agents specifically prevented the apoptotic death observed in twi OLs. However, while Sob-AM2 showed higher efficacy in restoring the impaired differentiation and maturation of twi OLs, clemastine more potently reduced the endogenous psychosine levels. These results present the first preclinical in vitro data, suggesting that clemastine and Sob-AM2 can act directly and distinctly on OLs in KD and ameliorate their cellular pathologies associated with myelin degeneration.


Subject(s)
Apoptosis , Clemastine , Disease Models, Animal , Leukodystrophy, Globoid Cell , Oligodendroglia , Psychosine , Animals , Leukodystrophy, Globoid Cell/pathology , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/drug therapy , Oligodendroglia/pathology , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Mice , Clemastine/pharmacology , Apoptosis/drug effects , Psychosine/analogs & derivatives , Psychosine/metabolism , Cell Differentiation/drug effects , Myelin Sheath/metabolism , Myelin Sheath/pathology , Brain/pathology , Brain/metabolism , Brain/drug effects , Cells, Cultured
2.
Mol Biol Rep ; 51(1): 106, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227057

ABSTRACT

BACKGROUND: ARF (ADP-ribosylation factor) GTPases are major regulators of intracellular trafficking, and classified into 3 groups (Type I - III), among which the type I group members, ARF1 and 3, are responsible genes for neurodevelopmental disorders. METHODS: In this study, we analysed the expression of Type I ARFs ARF1-3 during mouse brain development using biochemical and morphological methods. RESULTS: Western blotting analyses revealed that ARF1-3 are weakly expressed in the mouse brain at embryonic day 13 and gradually increase until postnatal day 30. ARF1-3 appear to be abundantly expressed in various telencephalon regions. Biochemical fractionation studies detected ARF1-3 in the synaptosome fraction of cortical neurons containing both pre- and post-synapses, however ARF1-3 were not observed in post-synaptic compartments. In immunohistochemical analyses, ARF1-3 appeared to be distributed in the cytoplasm and dendrites of cortical and hippocampal neurons as well as in the cerebellar molecular layer including dendrites of Purkinje cells and granule cell axons. Immunofluorescence in primary cultured hippocampal neurons revealed that ARF1-3 are diffusely distributed in the cytoplasm and dendrites with partial colocalization with a pre-synaptic marker, synaptophysin. CONCLUSIONS: Overall, our results support the notion that ARF1-3 could participate in vesicle trafficking both in the dendritic shaft (excluding spines) and axon terminals (pre-synaptic compartments).


Subject(s)
Monomeric GTP-Binding Proteins , Animals , Mice , ADP-Ribosylation Factors/genetics , Neurons , Axons , Cerebellum
3.
Dev Neurosci ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906993

ABSTRACT

INTRODUCTION: CtBP1 (C-terminal-binding protein 1) is a multi-functional protein with well-established roles as a transcriptional co-repressor in the nucleus and a regulator of membrane fission in the cytoplasm. Although CtBP1 gene abnormalities have been reported to cause neurodevelopmental disorders, the physiological role and expression profile of CtBP1 remains to be elucidated. METHODS: In this study, we used biochemical, immunohistochemical and immunofluorescence methods to analyze the expression of CtBP1 during mouse brain development. RESULTS: Western blotting analyses revealed that CtBP1 appeared to be expressed mainly in the central nervous system throughout the developmental process. In immunohistochemical analyses, region-specific nuclear as well as weak cytoplasmic distribution of CtBP1 was observed in telencephalon at embryonic day (E)15 and E17. It is of note that CtBP1 was barely detected in axons, but observed in the nucleus of oligodendrocytes in the white matter at E17. As to cerebellum at postnatal day 30, CtBP1 appeared to be expressed in the nucleus and cytoplasm of Purkinje cells, the nucleus of granule cells and cells in the molecular layer (ML), and the ML per se where granule cell axons and Purkinje cell dendrites are enriched. In addition, CtBP1 was detected in the cerebellar nuclei. CONCLUSION: The obtained results suggest involvement of CtBP1 in brain function.

4.
Med Mol Morphol ; 56(4): 266-273, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37402055

ABSTRACT

WAC is an adaptor protein involved in gene transcription, protein ubiquitination, and autophagy. Accumulating evidence indicates that WAC gene abnormalities are responsible for neurodevelopmental disorders. In this study, we prepared anti-WAC antibody, and performed biochemical and morphological characterization focusing on mouse brain development. Western blotting analyses revealed that WAC is expressed in a developmental stage-dependent manner. In immunohistochemical analyses, while WAC was visualized mainly in the perinuclear region of cortical neurons at embryonic day 14, nuclear expression was detected in some cells. WAC then came to be enriched in the nucleus of cortical neurons after birth. When hippocampal sections were stained, nuclear localization of WAC was observed in Cornu ammonis 1 - 3 and dentate gyrus. In cerebellum, WAC was detected in the nucleus of Purkinje cells and granule cells, and possibly interneurons in the molecular layer. In primary cultured hippocampal neurons, WAC was distributed mainly in the nucleus throughout the developing process while it was also localized at perinuclear region at 3 and 7 days in vitro. Notably, WAC was visualized in Tau-1-positive axons and MAP2-positive dendrites in a time-dependent manner. Taken together, results obtained here suggest that WAC plays a crucial role during brain development.


Subject(s)
Neurodevelopmental Disorders , Neurons , Mice , Animals , Neurons/metabolism , Axons , Hippocampus/metabolism , Brain , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism
5.
J Neurosci ; 41(43): 8887-8903, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34518307

ABSTRACT

Precise control of neuronal migration is required for the laminar organization of the neocortex and critical for brain function. We previously reported that the acute disruption of the Stk25 gene (Stk25 conditional knock-out; cKO) during mouse embryogenesis causes anomalous neuronal migration in the neocortex, but paradoxically the Stk25 cKO did not have a cortical phenotype, suggesting some forms of compensation exist. In this study, we report that MST3, another member of the GCKIII subgroup of the Ste20-like kinase family, compensates for loss of Stk25 and vice versa with sex independent manner. MST3 overexpression rescued neuronal migration deficit and abnormal axonogenesis in Stk25 cKO brains. Mechanistically, STK25 leads to Rac1 activation and reduced RhoA levels in the developing brain, both of which are required to fully restore neuronal migration in the Stk25 cKO brain. Abnormal migration phenotypes are also rescued by overexpression of Bacurd1and Cul3, which target RhoA for degradation, and activate Rac1. This study reveals that MST3 upregulation is capable of rescuing acute Stk25 deficiency and resolves details of signaling downstream STK25 required for corticogenesis both common to and distinct from MST3 signaling.SIGNIFICANCE STATEMENT Proper neuronal migration during cortical development is required for normal neuronal function. Here, we show that STK25 and MST3 kinases regulate neuronal migration and polarization in a mutually compensatory manner. Furthermore, STK25 balances Rac1 activity and RhoA level through forming complexes with α-PIX and ß-PIX, GTPase regulatory enzymes, and Cullin3-Bacurd1/Kctd13, a pair of RhoA ubiquitination molecules in a kinase activity-independent manner. Our findings demonstrate the importance of overlapping and unique roles of STK25 and MST3 to regulate Rho GTPase activities in cortical development.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Pregnancy , Protein Serine-Threonine Kinases/genetics , rho GTP-Binding Proteins/genetics
6.
Biochem Cell Biol ; 96(4): 483-489, 2018 08.
Article in English | MEDLINE | ID: mdl-29156143

ABSTRACT

MSX1 is one of the homeoproteins with the homeodomain (HD) sequence, which regulates proliferation and differentiation of mesenchymal cells. In this study, we investigated the nuclear localization signal (NLS) in the MSX1 HD by deletion and amino acid substitution analyses. The web-based tool NLStradamus predicted 2 putative basic motifs in the N- and C-termini of the MSX1 HD. Green fluorescent protein (GFP) chimera studies revealed that NLS1 (161RKHKTNRKPR170) and NLS2 (216NRRAKAKR223) were independently insufficient for robust nuclear localization. However, they can work cooperatively to promote nuclear localization of MSX1, as was shown by the 2 tandem NLS motifs partially restoring functional NLS, leading to a significant nuclear accumulation of the GFP chimera. These results demonstrate a unique NLS motif in MSX1, which consists of an essential single core motif in helix-I, with weak potency, and an auxiliary subdomain in helix-III, which alone does not have nuclear localization potency. Additionally, other peptide sequences, other than predicted 2 motifs in the spacer, may be necessary for complete nuclear localization in MSX1 HD.


Subject(s)
Cell Nucleus/metabolism , Homeodomain Proteins/metabolism , MSX1 Transcription Factor/metabolism , Amino Acid Sequence , Amino Acid Substitution , Cell Line , Homeodomain Proteins/genetics , Humans , Nuclear Localization Signals/metabolism
7.
Mutagenesis ; 31(1): 61-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26220009

ABSTRACT

Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypopalstic and/or aplastic clavicles, midface hypoplasia, absent or delayed closure of cranial sutures, moderately short stature, delayed eruption of permanent dentition and supernumerary teeth. The molecular pathogenesis can be explained in about two-thirds of CCD patients by haploinsufficiency of the RUNX2 gene. In our current study, we identified a novel and rare variant of the RUNX2 gene (c.181_189dupGCGGCGGCT) in a Japanese patient with phenotypic features of CCD. The insertion led an alanine tripeptide expansion (+3Ala) in the polyalanine tract. To date, a RUNX2 variant with alanine decapeptide expansion (+10Ala) is the only example of a causative variant of RUNX2 with polyalanine tract expansion to be reported, whilst RUNX2 (+1Ala) has been isolated from the healthy population. Thus, precise analyses of the RUNX2 (+3Ala) variant were needed to clarify whether the tripeptide expanded RUNX2 is a second disease-causing mutant with alanine tract expansion. We therefore investigated the biochemical properties of the mutant RUNX2 (+3Ala), which contains 20 alanine residues in the polyalanine tract. When transfected in COS7 cells, RUNX2 (+3Ala) formed intracellular ubiquitinated aggregates after 24h, and exerted a dominant negative effect in vitro. At 24h after gene transfection, whereas slight reduction was observed in RUNX2 (+10Ala), all of these mutants significantly activated osteoblast-specific element-2, a cis-acting sequence in the promoter of the RUNX2 target gene osteocalcin. The aggregation growth of RUNX2 (+3Ala) was clearly lower and slower than that of RUNX2 (+10Ala). Furthermore, we investigated several other RUNX2 variants with various alanine tract lengths, and found that the threshold for aggregation may be RUNX2 (+3Ala). We conclude that RUNX2 (+3Ala) is the cause of CCD in our current case, and that the accumulation of intracellular aggregates in vitro is related to the length of the alanine tract.


Subject(s)
Cleidocranial Dysplasia/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Trinucleotide Repeat Expansion , Adult , Asian People/genetics , Cell Line , Cleidocranial Dysplasia/diagnosis , Cleidocranial Dysplasia/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Humans , Japan , Osteocalcin/metabolism , Peptides , Transcriptional Activation
8.
Biochim Biophys Acta ; 1829(10): 1102-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23932921

ABSTRACT

In various human malignancies, widespread dysregulation of microRNA (miRNA) expression is reported to occur and affects various cell growth programs. Recent studies suggest that the expression levels of miRNAs that act as tumor suppressors are frequently reduced in cancers because of chromosome deletions, epigenetical changes, aberrant transcription, and disturbances in miRNA processing. MiR-143 and -145 are well-recognized miRNAs that are highly expressed in several tissues, but down-regulated in most types of cancers. However, the mechanism of this down-regulation has not been investigated in detail. Here, we show that DEAD-box RNA helicase 6, DDX6 (p54/RCK), post-transcriptionally down-regulated miR-143/145 expression by prompting the degradation of its host gene product, NCR143/145 RNA. In human gastric cancer cell line MKN45, DDX6 protein was abundantly expressed and accumulated in processing bodies (P-bodies). DDX6 preferentially increased the instability of non-coding RNA, NCR143/145, which encompasses the miR-143/145 cluster, and down-regulated the expression of mature miR-143/145. In human monocytic cell line THP-1, lipopolysaccharide treatment promoted the assembly of P-bodies and down-regulated the expression of NCR143/145 and its miR-143/145 rapidly. In these cells, cycloheximide treatment led to a loss of P-bodies and to an increase in NCR143/145 RNA stability, thus resulting in up-regulation of miR-143/145 expression. These data demonstrate that DDX6 contributed to the control of NCR143/145 RNA stability in P-bodies and post-transcriptionally regulated miR-143/145 expression in cancer cells.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Expression Regulation , MicroRNAs/antagonists & inhibitors , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/genetics , Stomach Neoplasms/genetics , Blotting, Western , Cells, Cultured , DEAD-box RNA Helicases/antagonists & inhibitors , DEAD-box RNA Helicases/genetics , Fluorescent Antibody Technique , Humans , Luciferases/metabolism , Male , MicroRNAs/genetics , Monocytes/cytology , Monocytes/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stomach Neoplasms/metabolism
9.
Eur J Oral Sci ; 122(1): 15-20, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24329876

ABSTRACT

Nonsyndromic tooth agenesis is one of the most common anomalies in human development. Part of the malformation is inherited and is associated with paired box 9 (PAX9), msh homeobox 1 (MSX1), and axin 2 (AXIN2) mutations. To obtain a comprehensive understanding of the genetic and molecular mechanisms that underlie this genetic disease, we investigated six familial and seven sporadic Japanese cases of nonsyndromic tooth agenesis. Searches for mutations in these candidate genes detected a novel nonsense mutation (c.416G>A) in exon 1 of MSX1 from a family with oligodontia. This mutation co-segregated in the affected family members. Moreover, this mutation produced a termination codon in the first exon and therefore the gene product (W139X) was truncated at the C terminus, hence, the entire homeodomain/MH4, which has many functions, such as DNA binding, protein-protein interaction, and nuclear localization, was absent. We characterized the properties of this truncated MSX1 by investigating the subcellular localization of the mutant gene product in transfected cells. The wild-type MSX1 localized exclusively at the nuclear periphery of transfected cells, whereas the mutant MSX1 was stable but localized diffusely throughout the whole cell. These results indicate that W139X MSX1 is responsible for tooth agenesis.


Subject(s)
Anodontia/genetics , Codon, Nonsense/genetics , MSX1 Transcription Factor/genetics , Adenine , Anodontia/pathology , Axin Protein/genetics , Cell Culture Techniques , Cell Nucleus/ultrastructure , Chromosome Segregation/genetics , Codon, Terminator/genetics , Dinucleotide Repeats/genetics , Exons/genetics , Female , Genes, Homeobox/genetics , Guanine , HEK293 Cells , Humans , Male , Middle Aged , PAX9 Transcription Factor/genetics , Tryptophan/genetics , Young Adult
10.
Mol Brain ; 16(1): 20, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747195

ABSTRACT

NLGN4X was identified as a single causative gene of rare familial nonsyndromic autism for the first time. It encodes the postsynaptic membrane protein Neuroligin4 (NLGN4), the functions and roles of which, however, are not fully understood due to the lack of a closely homologous gene in rodents. It has been confirmed only recently that human NLGN4 is abundantly expressed in the cerebral cortex and is localized mainly to excitatory synapses. However, the detailed histological distribution of NLGN4, which may have important implications regarding the relationships between NLGN4 and autistic phenotypes, has not been clarified. In this study, we raised specific monoclonal and polyclonal antibodies against NLGN4 and examined the distribution of NLGN4 in developing and developed human brains by immunohistochemistry. We found that, in the brain, NLGN4 is expressed almost exclusively in neurons, in which it has a widespread cytoplasmic pattern of distribution. Among various types of neurons with NLGN4 expression, we identified consistently high expression of NLGN4 in hypothalamic oxytocin (OXT)/vasopressin (AVP)-producing cells. Quantitative analyses revealed that the majority of OXT/AVP-producing neurons expressed NLGN4. NLGN4 signals in other large neurons, such as pyramidal cells in the cerebral cortex and hippocampus as well as neurons in the locus coeruleus and the raphe nucleus, were also remarkable, clearly contrasting with no or scarce signals in Purkinje cells. These data suggest that NLGN4 functions in systems involved in intellectual abilities, social abilities, and sleep and wakefulness, impairments of which are commonly seen in autism.


Subject(s)
Autistic Disorder , Humans , Arginine Vasopressin , Autistic Disorder/genetics , Hypothalamus/metabolism , Neurons/metabolism , Oxytocin/metabolism , Phenotype , Synapses/metabolism
11.
Biomolecules ; 13(5)2023 04 27.
Article in English | MEDLINE | ID: mdl-37238632

ABSTRACT

22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of developing various psychiatric and developmental disorders, including schizophrenia and early-onset Parkinson's disease. Recently, a mouse model of this disease, Del(3.0Mb)/+, mimicking the 3.0 Mb deletion which is most frequently found in patients with 22q11.2DS, was generated. The behavior of this mouse model was extensively studied and several abnormalities related to the symptoms of 22q11.2DS were found. However, the histological features of their brains have been little addressed. Here we describe the cytoarchitectures of the brains of Del(3.0Mb)/+ mice. First, we investigated the overall histology of the embryonic and adult cerebral cortices, but they were indistinguishable from the wild type. However, the morphologies of individual neurons were slightly but significantly changed from the wild type counterparts in a region-specific manner. The dendritic branches and/or dendritic spine densities of neurons in the medial prefrontal cortex, nucleus accumbens, and primary somatosensory cortex were reduced. We also observed reduced axon innervation of dopaminergic neurons into the prefrontal cortex. Given these affected neurons function together as the dopamine system to control animal behaviors, the impairment we observed may explain a part of the abnormal behaviors of Del(3.0Mb)/+ mice and the psychiatric symptoms of 22q11.2DS.


Subject(s)
DiGeorge Syndrome , Parkinson Disease , Schizophrenia , Animals , Mice , DiGeorge Syndrome/genetics , DiGeorge Syndrome/complications , DiGeorge Syndrome/diagnosis , Schizophrenia/pathology , Brain/pathology , Parkinson Disease/pathology , Prefrontal Cortex
12.
Hum Genome Var ; 10(1): 3, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702846

ABSTRACT

Congenital tooth agenesis is one of the most common anomalies in humans. Many genetic factors are involved in tooth development, including MSX1, PAX9, WNT10A, and LRP6. Thus, mutations in these genes can cause congenital tooth agenesis in humans. In this study, we identified a novel nonsense WNT10A variant, NM_025216.3(WNT10A_v001):c.1090A > T, which produces a C-terminal truncated gene product, p.(Lys364*), in a sporadic form of congenital tooth agenesis. The variant was not found in the healthy parents and thus was considered to cause congenital tooth agenesis in the case.

13.
Neurosci Res ; 163: 63-67, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32194144

ABSTRACT

Impaired social facilitation was reported in autism spectrum disorder (ASD) children. However, behavioral analysis methods of social facilitation for ASD model have not been reported. We developed a novel breeding home cage for social facilitation. Voluntary exercise of more social C57BL/6 J mice was significantly increased in the presence of observer mouse compared to that in the absence of observer mouse. In contrast, the presence of observer mouse did not affect voluntary exercise of less social BALB/cCrSlc mice. These suggest that BALB/cCrSlc mice, a mouse model of ASD, exhibited impaired social facilitation. Our method would provide novel clues for ASD pathophysiology.


Subject(s)
Autism Spectrum Disorder , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Social Behavior , Social Facilitation
14.
Brain Pathol ; 31(5): e12951, 2021 09.
Article in English | MEDLINE | ID: mdl-33822434

ABSTRACT

Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early-onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown. We have recently reported that OLs of twitcher mouse, an authentic mouse model of KD, exhibit developmental defects and endogenous accumulation of psychosine (galactosylsphingosine), a cytotoxic lyso-derivative of galactosylceramide. Here, we show that attenuated expression of microRNA (miR)-219, a critical regulator of OL differentiation and myelination, mediates cellular pathogenesis of KD OLs. Expression and functional activity of miR-219 were repressed in developing twitcher mouse OLs. By using OL precursor cells (OPCs) isolated from the twitcher mouse brain, we show that exogenously supplemented miR-219 effectively rescued their cell-autonomous developmental defects and apoptotic death. miR-219 also reduced endogenous accumulation of psychosine in twitcher OLs. Collectively, these results highlight the role of the reduced miR-219 expression in KD pathogenesis and suggest that miR-219 has therapeutic potential for treating KD OL pathologies.


Subject(s)
Leukodystrophy, Globoid Cell/pathology , MicroRNAs/genetics , Oligodendroglia/pathology , Psychosine/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Disease Models, Animal , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Mice, Transgenic , Oligodendroglia/metabolism
15.
Hum Genome Var ; 8(1): 29, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34285200

ABSTRACT

Congenital tooth agenesis is a common anomaly in humans. We investigated the etiology of human tooth agenesis by exome analysis in Japanese patients, and found a previously undescribed heterozygous deletion (NM_002448.3(MSX1_v001):c.433_449del) in the first exon of the MSX1 gene. The deletion leads to a frameshift and generates a premature termination codon. The truncated form of MSX1, namely, p.(Trp145Leufs*24) lacks the homeodomain, which is crucial for transcription factor function.

16.
Hum Genome Var ; 8(1): 30, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34285199

ABSTRACT

Congenital tooth agenesis is a common anomaly in human development. We performed exome sequence analysis of genomic DNA collected from Japanese patients with tooth agenesis and their relatives. We found a novel single-nucleotide insertion in the LRP6 gene, the product of which is involved in Wnt/ß-catenin signaling as a coreceptor for Wnt ligands. The single-nucleotide insertion results in a premature stop codon in the extracellular region of the encoded protein.

17.
Dev Biol ; 332(2): 383-95, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19520072

ABSTRACT

Meox1 and Meox2 are two related homeodomain transcription factor genes that together are essential for the development of all somite compartments. Here we show that mice homozygous for Meox1 mutations alone have abnormalities that are restricted to the sclerotome and its derivatives. A prominent and consistent phenotype of these mutations is a remodeling of the cranio-cervical joints whose major feature is the assimilation of the atlas into the basioccipital bone so that the skull rests on the axis. These abnormalities can be traced back to changes in the relative rates of cell proliferation in the rostral and caudal sclerotome compartments, and they are associated with alterations in the expression of at least three transcription factor genes, Tbx18, Uncx, and Bapx1. As previously observed for Bapx1, MEOX1 protein occupies evolutionarily conserved promoter regions of Tbx18 and Uncx, suggesting that Meox1 regulates these genes at least in part directly. Hence, Meox1 is part of a regulatory circuit that serves an essential, non-redundant function in the maintenance of rostro-caudal sclerotome polarity and axial skeleton formation.


Subject(s)
Body Patterning/physiology , Cervical Vertebrae/embryology , Homeodomain Proteins/metabolism , Joints/embryology , Mesoderm/metabolism , Skull/embryology , Animals , Biomarkers/metabolism , Cervical Vertebrae/abnormalities , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , In Situ Hybridization , Joints/abnormalities , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Promoter Regions, Genetic , Skull/abnormalities , Somites/cytology , Somites/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Mol Brain ; 13(1): 80, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448361

ABSTRACT

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, a rare congenital anomaly syndrome characterized by intellectual disability, brain malformation, facial dysmorphism, musculoskeletal abnormalities, and some visceral malformations is caused by de novo heterozygous mutations of the SON gene. The nuclear protein SON is involved in gene transcription and RNA splicing; however, the roles of SON in neural development remain undetermined. We investigated the effects of Son knockdown on neural development in mice and found that Son knockdown in neural progenitors resulted in defective migration during corticogenesis and reduced spine density on mature cortical neurons. The induction of human wild-type SON expression rescued these neural abnormalities, confirming that the abnormalities were caused by SON insufficiency. We also applied truncated SON proteins encoded by disease-associated mutant SON genes for rescue experiments and found that a truncated SON protein encoded by the most prevalent SON mutant found in ZTTK syndrome rescued the neural abnormalities while another much shorter mutant SON protein did not. These data indicate that SON insufficiency causes neuronal migration defects and dendritic spine abnormalities, which seem neuropathological bases of the neural symptoms of ZTTK syndrome. In addition, the results support that the neural abnormalities in ZTTK syndrome are caused by SON haploinsufficiency independent of the types of mutation that results in functional or dysfunctional proteins.


Subject(s)
Abnormalities, Multiple/genetics , Cell Movement , DNA-Binding Proteins/genetics , Dendritic Spines/pathology , Gene Knockdown Techniques , Nuclear Proteins/genetics , Animals , Brain/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Mice , Mutation/genetics , Nuclear Proteins/metabolism , Pyramidal Cells/metabolism , Syndrome
19.
Mol Genet Genomic Med ; 7(7): e00698, 2019 07.
Article in English | MEDLINE | ID: mdl-31106992

ABSTRACT

BACKGROUND: The tricarboxylic acid (TCA) cycle is a sequence of catabolic reactions within the mitochondrial matrix, and is a central pathway for cellular energy metabolism. Genetic defects affecting the TCA cycle are known to cause severe multisystem disorders. METHODS: We performed whole exome sequencing of genomic DNA of a patient with progressive cerebellar and cerebral atrophy, hypotonia, ataxia, seizure disorder, developmental delay, ophthalmological abnormalities and hearing loss. We also performed biochemical studies using patient fibroblasts. RESULTS: We identified new compound heterozygous mutations (c.1534G > A, p.Asp512Asn and c.1997G > C, p.Gly666Ala) in ACO2, which encodes aconitase 2, a component of the TCA cycle. In patient fibroblasts, the aconitase activity was reduced to 15% of that of the control, and the aconitase 2 level decreased to 36% of that of the control. As such a decrease in aconitase 2 in patient fibroblasts was partially restored by proteasome inhibition, mutant aconitase 2 was suggested to be relatively unstable and rapidly degraded after being synthesized. In addition, the activity of the father-derived variant of aconitase 2 (p.Gly666Ala), which had a mutation near the active center, was 55% of that of wild-type. CONCLUSION: The marked reduction of aconitase activity in patient fibroblasts was due to the combination of decreased aconitase 2 amount and activity due to mutations. Reduced aconitase activity directly suppresses the TCA cycle, resulting in mitochondrial dysfunction, which may lead to symptoms similar to those observed in mitochondrial diseases.


Subject(s)
Aconitate Hydratase/genetics , Brain Diseases/genetics , Cerebellum/pathology , Cerebrum/pathology , Mutation , Aconitate Hydratase/metabolism , Atrophy/genetics , Atrophy/pathology , Brain Diseases/pathology , Cells, Cultured , Cerebellum/metabolism , Cerebrum/metabolism , Child, Preschool , Female , Fibroblasts/metabolism , HEK293 Cells , Heterozygote , Humans
20.
Int J Dev Neurosci ; 25(6): 367-72, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17804189

ABSTRACT

Accumulating evidence suggests the possible association between the concentrations of serum brain-derived neurotrophic factor (BDNF) and psychiatric disease with impaired brain development. Yet the reasons remain unclear. We therefore investigated the characteristics of serum BDNF as well as its age-related changes in healthy controls in comparison to autism cases. BDNF was gradually released from platelets at 4 degrees C, reached a maximal concentration after around 24 h, and remained stable until 42 h. At room temperature, BDNF was found to be immediately degraded. Circadian changes, but not seasonal changes, were found in serum levels of BDNF existing as the mature form with a molecular mass of 14 kDa. In healthy controls, the serum BDNF concentration increased over the first several years, then slightly decreased after reaching the adult level. There were no sex differences between males and females. In the autism cases, mean levels were significantly lower in children 0-9 years old compared to teenagers or adults, or to age-matched healthy controls, indicating a delayed BDNF increase with development. In a separate study of adult rats, a circadian change in serum BDNF was found to be similar to that in the cortex, indicating a possible association with cortical functions.


Subject(s)
Aging/blood , Autistic Disorder/blood , Brain-Derived Neurotrophic Factor/blood , Brain/growth & development , Brain/metabolism , Adolescent , Adult , Age Distribution , Animals , Autistic Disorder/physiopathology , Blood Platelets/metabolism , Brain/physiopathology , Brain-Derived Neurotrophic Factor/chemistry , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Child , Child, Preschool , Circadian Rhythm/physiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Weight , Rats , Seasons , Sex Distribution , Specimen Handling , Temperature , Time Factors , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL