Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Proc Natl Acad Sci U S A ; 120(45): e2308569120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37917792

ABSTRACT

Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.


Subject(s)
Toxoplasma , Humans , Toxoplasma/genetics , Genome , DNA, Mitochondrial/genetics , Mitochondria/genetics , Evolution, Molecular , Cell Nucleus/genetics , Sequence Analysis, DNA
2.
Genome Res ; 31(5): 852-865, 2021 05.
Article in English | MEDLINE | ID: mdl-33906963

ABSTRACT

Mitochondrial genome content and structure vary widely across the eukaryotic tree of life, with protists displaying extreme examples. Apicomplexan and dinoflagellate protists have evolved highly reduced mitochondrial genome sequences, mtDNA, consisting of only three cytochrome genes and fragmented rRNA genes. Here, we report the independent evolution of fragmented cytochrome genes in Toxoplasma and related tissue coccidia and evolution of a novel genome architecture consisting minimally of 21 sequence blocks (SBs) totaling 5.9 kb that exist as nonrandom concatemers. Single-molecule Nanopore reads consisting entirely of SBs ranging from 0.1 to 23.6 kb reveal both whole and fragmented cytochrome genes. Full-length cytochrome transcripts including a divergent coxIII are detected. The topology of the mitochondrial genome remains an enigma. Analysis of a cob point mutation reveals that homoplasmy of SBs is maintained. Tissue coccidia are important pathogens of man and animals, and the mitochondrion represents an important therapeutic target. The mtDNA sequence has been elucidated, but a definitive genome architecture remains elusive.


Subject(s)
Coccidia , Genome, Mitochondrial , Toxoplasma , Animals , Coccidia/genetics , DNA, Mitochondrial/genetics , Eukaryota/genetics , Humans , Toxoplasma/genetics
3.
Adv Exp Med Biol ; 1301: 59-79, 2021.
Article in English | MEDLINE | ID: mdl-34370288

ABSTRACT

Ferroptosis is a distinct form regulated necrotic cell death mainly characterized by the accumulation of toxic lipid peroxides. The importance of this form of cell death has been recognized in several diseases. An imbalance between free radicals and antioxidant molecules has been reported to play role in several pathologies and is commonly associated with worse outcomes of these maladies. Emerging evidence suggests that ferroptosis and/or its regulators may modulate other forms of cell death leading to the induction of necro-inflammatory response and consequently organ failure. Herein, we review the major forms of necrotic cell death triggered by pathogens highlighting mechanisms in which oxidative stress and cellular antioxidants may limit or favor pathogen dissemination defining host cell fate. Specially, we discuss the role of ferroptosis and how its molecular components may modulate disease progression.


Subject(s)
Communicable Diseases , Ferroptosis , Antioxidants , Cell Death , Humans , Lipid Peroxidation
4.
mSphere ; 9(6): e0011124, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38809064

ABSTRACT

Asexual replication in the apicomplexan Sarcocystis neurona involves two main developmental stages: the motile extracellular merozoite and the sessile intracellular schizont. Merozoites invade host cells and transform into schizonts that undergo replication via endopolygeny to form multiple (64) daughter merozoites that are invasive to new host cells. Given that the capabilities of the merozoite vary significantly from the schizont, the patterns of transcript levels throughout the asexual lifecycle were determined and compared in this study. RNA-Seq data were generated from extracellular merozoites and four intracellular schizont development time points. Of the 6,938 genes annotated in the S. neurona genome, 6,784 were identified in the transcriptome. Of these, 4,111 genes exhibited significant differential expression between the merozoite and at least one schizont development time point. Transcript levels were significantly higher for 2,338 genes in the merozoite and 1,773 genes in the schizont stages. Included in this list were genes encoding the secretory pathogenesis determinants (SPDs), which encompass the surface antigen and SAG-related sequence (SAG/SRS) and the secretory organelle proteins of the invasive zoite stage (micronemes, rhoptries, and dense granules). As anticipated, many of the S. neurona SPD gene transcripts were abundant in merozoites. However, several SPD transcripts were elevated in intracellular schizonts, suggesting roles unrelated to host cell invasion and the initial establishment of the intracellular niche. The hypothetical genes that are potentially unique to the genus Sarcocystis are of particular interest. Their conserved expression patterns are instructive for future investigations into the possible functions of these putative Sarcocystis-unique genes. IMPORTANCE: The genus Sarcocystis is an expansive clade within the Apicomplexa, with the species S. neurona being an important cause of neurological disease in horses. Research to decipher the biology of S. neurona and its host-pathogen interactions can be enhanced by gene expression data. This study has identified conserved apicomplexan orthologs in S. neurona, putative Sarcocystis-unique genes, and gene transcripts abundant in the merozoite and schizont stages. Importantly, we have identified distinct clusters of genes with transcript levels peaking during different intracellular schizont development time points, reflecting active gene expression changes across endopolygeny. Each cluster also has subsets of transcripts with unknown functions, and investigation of these seemingly Sarcocystis-unique transcripts will provide insights into the interesting biology of this parasite genus.


Subject(s)
Merozoites , Sarcocystis , Sarcocystis/genetics , Sarcocystis/growth & development , Merozoites/growth & development , Schizonts/genetics , Schizonts/growth & development , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Transcriptome , Gene Expression Profiling , Reproduction, Asexual/genetics , Animals , Sarcocystosis/parasitology , Sarcocystosis/veterinary , Life Cycle Stages/genetics
5.
Gut Microbes ; 16(1): 2353394, 2024.
Article in English | MEDLINE | ID: mdl-38743047

ABSTRACT

Exposing C-section infants to the maternal vaginal microbiome, coined "vaginal seeding", partially restores microbial colonization. However, whether vaginal seeding decreases metabolic disease risk is unknown. Therefore, we assessed the effect of vaginal seeding of human infants on adiposity in a murine model. Germ-free mice were colonized with transitional stool from human infants who received vaginal seeding or control (placebo) seeding in a double-blind randomized trial. There was a reduction in intraabdominal adipose tissue (IAAT) volume in male mice that received stool from vaginally seeded infants compared to control infants. Higher levels of isoleucine and lower levels of nucleic acid metabolites were observed in controls and correlated with increased IAAT. This suggests that early changes in the gut microbiome and metabolome caused by vaginal seeding have a positive impact on metabolic health.


Subject(s)
Adiposity , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Vagina , Animals , Humans , Female , Mice , Male , Vagina/microbiology , Feces/microbiology , Feces/chemistry , Double-Blind Method , Intra-Abdominal Fat/metabolism , Infant , Infant, Newborn
6.
Nat Microbiol ; 9(1): 120-135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066332

ABSTRACT

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Animals , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Necrosis , Tuberculosis/microbiology , Tuberculosis, Pulmonary/genetics
7.
Front Immunol ; 14: 1232764, 2023.
Article in English | MEDLINE | ID: mdl-37744331

ABSTRACT

The observation of reduced COVID-19 incidence and severity in populations receiving neonatal intradermal BCG vaccination vaccine raised the question of whether BCG can induce non-specific protection against the SARS-CoV-2 (SCV2) virus. Subsequent epidemiologic studies and clinical trials have largely failed to support this hypothesis. Furthermore, in small animal model studies all investigators have failed to observe resistance to viral challenge in response to BCG immunization by the conventional and clinically acceptable intradermal or subcutaneous routes. Nevertheless, BCG administered by the intravenous (IV) route has been shown to strongly protect both hamsters and mice against SCV2 infection and disease. In this Perspective, we review the current data on the effects of BCG vaccination on resistance to COVID-19 as well as summarize recent work in rodent models on the mechanisms by which IV administered BCG promotes resistance to the virus and discuss the translational implications of these findings.


Subject(s)
COVID-19 , Cricetinae , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2 , BCG Vaccine , Thorax , Lung
8.
mBio ; 14(2): e0035323, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36877010

ABSTRACT

Antituberculosis therapy (ATT) causes a rapid and distinct alteration in the composition of the intestinal microbiota that is long lasting in both mice and humans. This observation raised the question of whether such antibiotic-induced changes in the microbiome might affect the absorption or gut metabolism of the tuberculosis (TB) drugs themselves. To address this issue, we utilized a murine model of antibiotic-induced dysbiosis to assay the bioavailability of rifampicin, moxifloxacin, pyrazinamide, and isoniazid in mouse plasma over a period of 12 h following individual oral administration. We found that 4-week pretreatment with a regimen of isoniazid, rifampicin, and pyrazinamide (HRZ), a drug combination used clinically for ATT, failed to reduce the exposure of any of the four antibiotics assayed. Nevertheless, mice that received a pretreatment cocktail of the broad-spectrum antibiotics vancomycin, ampicllin, neomycin, and metronidazole (VANM), which are known to deplete the intestinal microbiota, displayed a significant decrease in the plasma concentration of rifampicin and moxifloxacin during the assay period, an observation that was validated in germfree animals. In contrast, no major effects were observed when similarly pretreated mice were exposed to pyrazinamide or isoniazid. Thus, the data from this animal model study indicate that the dysbiosis induced by HRZ does not reduce the bioavailability of the drugs themselves. Nevertheless, our observations suggest that more extreme alterations of the microbiota, such as those occurring in patients on broad-spectrum antibiotics, could directly or indirectly affect the exposure of important TB drugs and thereby potentially influencing treatment outcome. IMPORTANCE Previous studies have shown that treatment of Mycobacterium tuberculosis infection with first-line antibiotics results in a long-lasting disruption of the host microbiota. Since the microbiome has been shown to influence the host availability of other drugs, we employed a mouse model to ask whether the dysbiosis resulting from either tuberculosis (TB) chemotherapy or a more aggressive course of broad-spectrum antibiotics might influence the pharmacokinetics of the TB antibiotics themselves. While drug exposure was not reduced in animals previously described as exhibiting the dysbiosis triggered by conventional TB chemotherapy, we found that mice with other alterations in the microbiome, such as those triggered by more intensive antibiotic treatment, displayed decreased availability of rifampicin and moxifloxacin, which in turn could impact their efficacy. The above findings are relevant not only to TB but also to other bacterial infections treated with these two broader spectrum antibiotics.


Subject(s)
Antitubercular Agents , Tuberculosis , Humans , Animals , Mice , Antitubercular Agents/therapeutic use , Rifampin/therapeutic use , Isoniazid/therapeutic use , Pyrazinamide/therapeutic use , Biological Availability , Moxifloxacin/therapeutic use , Dysbiosis/etiology , Tuberculosis/microbiology
9.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37293002

ABSTRACT

Toxoplasma gondii is a zoonotic protist pathogen that infects up to 1/3 of the human population. This apicomplexan parasite contains three genome sequences: nuclear (63 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear DNA of mitochondrial origin) and NUPTs (nuclear DNA of plastid origin) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome; the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 MY ago, revealed that the movement and fixation of 5 NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb) and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.

10.
Sci Immunol ; 8(86): eadf8161, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37566678

ABSTRACT

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Mice , Humans , Animals , COVID-19/metabolism , SARS-CoV-2 , Macrophages , Lung , Mice, Transgenic
11.
Nat Commun ; 14(1): 8229, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086794

ABSTRACT

Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models. We report that IFNγ is required for iv BCG induced reduction in pulmonary viral loads, an outcome dependent on IFNγ receptor expression by non-hematopoietic cells. Importantly, we show that BCG infection prompts pulmonary epithelial cells to upregulate IFN-stimulated genes with reported anti-viral activity in an IFNγ-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirm the anti-viral properties of IFNγ by demonstrating that the recombinant cytokine itself provides strong protection against SARS-CoV-2 challenge when administered intranasally. Together, our data show that a pre-established IFNγ response within the lung is protective against SARS-CoV-2 infection, suggesting that concurrent or recent infections that drive IFNγ may limit the pathogenesis of SARS-CoV-2 and supporting possible prophylactic uses of IFNγ in COVID-19 management.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , SARS-CoV-2 , Interferon-gamma , COVID-19/prevention & control , Lung , Interferon Type I/pharmacology
12.
bioRxiv ; 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36380767

ABSTRACT

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses.

13.
Front Cell Infect Microbiol ; 12: 862582, 2022.
Article in English | MEDLINE | ID: mdl-35586249

ABSTRACT

Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in Mycobacterium tuberculosis (Mtb) infection. Here, we investigated the pattern recognition receptors and signaling pathways by which Mtb triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by Mtb bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by Mtb but not LPS or PAM3CSK4. Importantly, the Mtb-induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that Mtb induces Irg1 expression in macrophages via the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized Mtb products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.


Subject(s)
Hydro-Lyases , Macrophages , Membrane Proteins , Mycobacterium tuberculosis , Receptor, Interferon alpha-beta , Toll-Like Receptor 2 , Adaptor Proteins, Signal Transducing/metabolism , Animals , Enzyme Induction , Hydro-Lyases/biosynthesis , Hydro-Lyases/immunology , Macrophages/immunology , Macrophages/microbiology , Membrane Proteins/metabolism , Mice , Mycobacterium tuberculosis/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Phagocytosis , Receptor, Interferon alpha-beta/metabolism , Toll-Like Receptor 2/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology
14.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34889942

ABSTRACT

In addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer nonspecific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment. Here, we demonstrate that intravenous, but not subcutaneous, inoculation of BCG protects human-ACE2 transgenic mice against lethal challenge with SARS-CoV-2 (SCV2) and results in reduced viral loads in non-transgenic animals infected with an α variant. The observed increase in host resistance was associated with reductions in SCV2-induced tissue pathology, inflammatory cell recruitment, and cytokine production that multivariate analysis revealed as only partially related to diminished viral load. We propose that this protection stems from BCG-induced alterations in the composition and function of the pulmonary cellular compartment that impact the innate response to the virus and ensuing immunopathology. While intravenous BCG vaccination is not a clinically acceptable practice, our findings provide an experimental model for identifying mechanisms by which nonspecific stimulation of the pulmonary immune response promotes host resistance to SCV2 lethality.


Subject(s)
BCG Vaccine/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Administration, Intravenous , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chemokines/metabolism , Humans , Inflammation/pathology , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
15.
Sci Immunol ; : eabo0535, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35271298

ABSTRACT

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.

16.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36069923

ABSTRACT

Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.


Subject(s)
Ferroptosis , Glutathione Peroxidase/metabolism , Tuberculosis , Animals , Glutathione/metabolism , Lipid Peroxidation , Mice , Mice, Transgenic , Necrosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Tuberculosis/immunology , Tuberculosis/metabolism
17.
Front Cell Infect Microbiol ; 11: 672527, 2021.
Article in English | MEDLINE | ID: mdl-34235093

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) remains a major public health problem worldwide due in part to the lack of an effective vaccine and to the lengthy course of antibiotic treatment required for successful cure. Combined immuno/chemotherapeutic intervention represents a major strategy for developing more effective therapies against this important pathogen. Because of the major role of CD4+ T cells in containing Mtb infection, augmentation of bacterial specific CD4+ T cell responses has been considered as an approach in achieving this aim. Here we present new data from our own research aimed at determining whether boosting CD4+ T cell responses can promote antibiotic clearance. In these studies, we first characterized the impact of antibiotic treatment of infected mice on Th1 responses to major Mtb antigens and then performed experiments aimed at sustaining CD4+ T cell responsiveness during antibiotic treatment. These included IL-12 infusion, immunization with ESAT-6 and Ag85B immunodominant peptides and adoptive transfer of Th1-polarized CD4+ T cells specific for ESAT-6 or Ag85B during the initial month of chemotherapy. These approaches failed to enhance antibiotic clearance of Mtb, indicating that boosting Th1 responses to immunogenic Mtb antigens highly expressed by actively dividing bacteria is not an effective strategy to be used in the initial phase of antibiotic treatment, perhaps because replicating organisms are the first to be eliminated by the drugs. These results are discussed in the context of previously published findings addressing this concept along with possible alternate approaches for harnessing Th1 immunity as an adjunct to chemotherapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Anti-Bacterial Agents/therapeutic use , Antigens, Bacterial , Bacterial Proteins , CD4-Positive T-Lymphocytes , Mice , Tuberculosis/drug therapy
18.
Mucosal Immunol ; 14(1): 253-266, 2021 01.
Article in English | MEDLINE | ID: mdl-32862202

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro. Among the products of heme degradation by HO-1 (biliverdin, carbon monoxide, and iron), only iron supplementation reverted the HO-1 inhibition-induced enhancement of bacterial control and this reversal was associated with decreased NOS2 expression and NO production. In addition, we found that HO-1 inhibition results in decreased labile iron levels in Mtb-infected macrophages in vitro and diminished iron accumulation in Mtb-infected lungs in vivo. Together these results suggest that the T-lymphocyte dependence of the therapeutic outcome of HO-1 inhibition on Mtb infection reflects the role of the enzyme in generating iron that suppresses T-cell-mediated IFNγ/NOS2-dependent bacterial control. In broader terms, our findings highlight the importance of the crosstalk between iron metabolism and adaptive immunity in determining the outcome of infection.


Subject(s)
Heme Oxygenase-1/antagonists & inhibitors , Host-Pathogen Interactions , Interferon-gamma/metabolism , Mycobacterium tuberculosis , Nitric Oxide Synthase Type II/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Bacterial Load , Host-Pathogen Interactions/immunology , Iron/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Models, Biological , Mycobacterium tuberculosis/immunology , Nitric Oxide/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tuberculosis/immunology
19.
Mucosal Immunol ; 14(5): 1055-1066, 2021 09.
Article in English | MEDLINE | ID: mdl-34158594

ABSTRACT

Targeting MAIT cells holds promise for the treatment of different diseases and infections. We previously showed that treatment of Mycobacterium tuberculosis infected mice with 5-OP-RU, a major antigen for MAIT cells, expands MAIT cells and enhances bacterial control. Here we treated M. tuberculosis infected rhesus macaques with 5-OP-RU intratracheally but found no clinical or microbiological benefit. In fact, after 5-OP-RU treatment MAIT cells did not expand, but rather upregulated PD-1 and lost the ability to produce multiple cytokines, a phenotype resembling T cell exhaustion. Furthermore, we show that vaccination of uninfected macaques with 5-OP-RU+CpG instillation into the lungs also drives MAIT cell dysfunction, and PD-1 blockade during vaccination partly prevents the loss of MAIT cell function without facilitating their expansion. Thus, in rhesus macaques MAIT cells are prone to the loss of effector functions rather than expansion after TCR stimulation in vivo, representing a significant barrier to therapeutically targeting these cells.


Subject(s)
Lung/drug effects , Lung/immunology , Lung/metabolism , Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Ribitol/analogs & derivatives , Uracil/analogs & derivatives , Animals , Biomarkers , Cytokines/biosynthesis , Disease Management , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunophenotyping , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macaca mulatta , Monkey Diseases/diagnosis , Monkey Diseases/drug therapy , Monkey Diseases/etiology , Monkey Diseases/metabolism , Mycobacterium tuberculosis/immunology , Positron-Emission Tomography , Ribitol/administration & dosage , Tomography, X-Ray Computed , Tuberculosis/veterinary , Uracil/administration & dosage
20.
bioRxiv ; 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34494021

ABSTRACT

Early events in the host response to SARS-CoV-2 are thought to play a major role in determining disease severity. During pulmonary infection, the virus encounters both myeloid and epithelioid lineage cells that can either support or restrict pathogen replication as well as respond with host protective versus detrimental mediators. In addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer non-specific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment. Here we demonstrate that prior intravenous, but not subcutaneous, administration of BCG protects human-ACE2 transgenic mice against lethal challenge with SARS-CoV-2 and results in reduced viral loads in non-transgenic animals infected with an alpha variant. The observed increase in host resistance was associated with reductions in SARS-CoV-2-induced tissue pathology, inflammatory cell recruitment and cytokine production that multivariate analysis revealed to be only partially related to diminished viral load. We propose that this protection stems from BCG-induced alterations in the composition and function of the pulmonary cellular compartment that impact the innate response to the virus and the ensuing immunopathology.

SELECTION OF CITATIONS
SEARCH DETAIL