Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Blood ; 141(20): 2520-2536, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36735910

ABSTRACT

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Subject(s)
Proteomics , Spermidine , Humans , Spermidine/metabolism , Peptide Initiation Factors/genetics , Cell Differentiation , Eukaryotic Translation Initiation Factor 5A
2.
Am J Hematol ; 99(1): 99-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37929634

ABSTRACT

Human erythropoiesis is a complex process leading to the production of 2.5 million red blood cells per second. Following commitment of hematopoietic stem cells to the erythroid lineage, this process can be divided into three distinct stages: erythroid progenitor differentiation, terminal erythropoiesis, and reticulocyte maturation. We recently resolved the heterogeneity of erythroid progenitors into four different subpopulations termed EP1-EP4. Here, we characterized the growth factor(s) responsiveness of these four progenitor populations in terms of proliferation and differentiation. Using mass spectrometry-based proteomics on sorted erythroid progenitors, we quantified the absolute expression of ~5500 proteins from EP1 to EP4. Further functional analyses highlighted dynamic changes in cell cycle in these populations with an acceleration of the cell cycle during erythroid progenitor differentiation. The finding that E2F4 expression was increased from EP1 to EP4 is consistent with the noted changes in cell cycle. Finally, our proteomic data suggest that the protein machinery necessary for both oxidative phosphorylation and glycolysis is present in these progenitor cells. Together, our data provide comprehensive insights into growth factor-dependence of erythroid progenitor proliferation and the proteome of four distinct populations of human erythroid progenitors which will be a useful framework for the study of erythroid disorders.


Subject(s)
Hematopoietic Stem Cells , Proteomics , Humans , Cell Differentiation , Cell Cycle , Erythropoiesis , Metabolic Networks and Pathways , Intercellular Signaling Peptides and Proteins/metabolism , Erythroid Precursor Cells
3.
Pediatr Blood Cancer ; 71(8): e31075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38764170

ABSTRACT

Severe aplastic anemia (SAA) is a rare potentially fatal hematologic disorder. Although overall outcomes with treatment are excellent, there are variations in management approach, including differences in treatment between adult and pediatric patients. Certain aspects of treatment are under active investigation in clinical trials. Because of the rarity of the disease, some pediatric hematologists may have relatively limited experience with the complex management of SAA. The following recommendations reflect an up-to-date evidence-based approach to the treatment of children with relapsed or refractory SAA.


Subject(s)
Anemia, Aplastic , Humans , Anemia, Aplastic/therapy , Child , Recurrence , Evidence-Based Medicine , Hematopoietic Stem Cell Transplantation
4.
Pediatr Blood Cancer ; 71(8): e31070, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38757488

ABSTRACT

Severe aplastic anemia (SAA) is a rare potentially fatal hematologic disorder. Although overall outcomes with treatment are excellent, there are variations in management approach, including differences in treatment between adult and pediatric patients. Certain aspects of treatment are under active investigation in clinical trials. Because of the rarity of the disease, some pediatric hematologists may have relatively limited experience with the complex management of SAA. The following recommendations reflect an up-to-date evidence-based approach to the treatment of children with newly diagnosed SAA.


Subject(s)
Anemia, Aplastic , Humans , Anemia, Aplastic/therapy , Anemia, Aplastic/diagnosis , Child , Evidence-Based Medicine , Practice Guidelines as Topic/standards
5.
Blood Cells Mol Dis ; 102: 102759, 2023 09.
Article in English | MEDLINE | ID: mdl-37267698

ABSTRACT

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by congenital anomalies, cancer predisposition and a severe hypo-proliferative anemia. It was the first disease linked to ribosomal dysfunction and >70 % of patients have been identified to have a haploinsufficiency of a ribosomal protein (RP) gene, with RPS19 being the most common mutation. There is significant variability within the disease in terms of phenotype as well as response to therapy suggesting that other genes contribute to the pathophysiology and potential management of this disease. To explore these questions, we performed a genome-wide CRISPR screen in a cellular model of DBA and identified Calbindin 1 (CALB1), a member of the calcium-binding superfamily, as a potential modifier of the disordered erythropoiesis in DBA. We used human derived CD34+ cells cultured in erythroid stimulating media with knockdown of RPS19 as a model for DBA to study the effects of CALB1. We found that knockdown of CALB1 in this DBA model promoted erythroid maturation. We also noted effects of CALB1 knockdown on cell cycle. Taken together, our results reveal CALB1 is a novel regulator of human erythropoiesis and has implications for using CALB1 as a novel therapeutic target in DBA.


Subject(s)
Anemia, Diamond-Blackfan , Anemia , Humans , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/therapy , Erythropoiesis/genetics , Calbindin 1/genetics , Mutation
6.
J Biol Chem ; 297(3): 100988, 2021 09.
Article in English | MEDLINE | ID: mdl-34298020

ABSTRACT

Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1-mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3'-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1-mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3'-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.


Subject(s)
Anemia, Diamond-Blackfan/pathology , Erythropoiesis/drug effects , Ginsenosides/pharmacology , Panax/chemistry , Protein Serine-Threonine Kinases/drug effects , 3' Untranslated Regions , Animals , Humans
7.
Nature ; 539(7629): 384-389, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27820943

ABSTRACT

The ß-haemoglobinopathies, such as sickle cell disease and ß-thalassaemia, are caused by mutations in the ß-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure ß-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult ß-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for ß-haemoglobinopathies.


Subject(s)
Anemia, Sickle Cell/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Targeting , Genetic Therapy/methods , Hematopoietic Stem Cells/metabolism , beta-Globins/genetics , Alleles , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Animals , Antigens, CD34/metabolism , CRISPR-Associated Proteins/metabolism , Cell Differentiation , Cell Lineage , Cell Separation , Dependovirus/genetics , Erythrocytes , Female , Flow Cytometry , Genes, Reporter , Homologous Recombination , Humans , Magnets , Mice, Inbred NOD , Mice, SCID , Microspheres , Mutation , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy
8.
Am J Hum Genet ; 103(6): 930-947, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30503522

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.


Subject(s)
Anemia, Diamond-Blackfan/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Exome/genetics , Exons/genetics , Female , Gene Deletion , Genetic Association Studies/methods , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mutation/genetics , Phenotype , Ribosomal Proteins/genetics , Ribosomes/genetics , Sequence Analysis, RNA/methods , Exome Sequencing/methods
9.
Am J Hematol ; 96(9): 1064-1076, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34021930

ABSTRACT

Identification of stage-specific erythroid cells is critical for studies of normal and disordered human erythropoiesis. While immunophenotypic strategies have previously been developed to identify cells at each stage of terminal erythroid differentiation, erythroid progenitors are currently defined very broadly. Refined strategies to identify and characterize BFU-E and CFU-E subsets are critically needed. To address this unmet need, a flow cytometry-based technique was developed that combines the established surface markers CD34 and CD36 with CD117, CD71, and CD105. This combination allowed for the separation of erythroid progenitor cells into four discrete populations along a continuum of progressive maturation, with increasing cell size and decreasing nuclear/cytoplasmic ratio, proliferative capacity and stem cell factor responsiveness. This strategy was validated in uncultured, primary erythroid cells isolated from bone marrow of healthy individuals. Functional colony assays of these progenitor populations revealed enrichment of BFU-E only in the earliest population, transitioning to cells yielding BFU-E and CFU-E, then CFU-E only. Utilizing CD34/CD105 and GPA/CD105 profiles, all four progenitor stages and all five stages of terminal erythroid differentiation could be identified. Applying this immunophenotyping strategy to primary bone marrow cells from patients with myelodysplastic syndrome, identified defects in erythroid progenitors and in terminal erythroid differentiation. This novel immunophenotyping technique will be a valuable tool for studies of normal and perturbed human erythropoiesis. It will allow for the discovery of stage-specific molecular and functional insights into normal erythropoiesis as well as for identification and characterization of stage-specific defects in inherited and acquired disorders of erythropoiesis.


Subject(s)
Erythroid Cells/cytology , Erythroid Precursor Cells/cytology , Erythropoiesis , Antigens, CD/analysis , Antigens, CD34/analysis , Bone Marrow Cells/cytology , Cells, Cultured , Endoglin/analysis , Flow Cytometry/methods , Humans , Immunophenotyping/methods
10.
Am J Hematol ; 96(11): 1491-1504, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34342889

ABSTRACT

The North American Pediatric Aplastic Anemia Consortium (NAPAAC) is a group of pediatric hematologist-oncologists, hematopathologists, and bone marrow transplant physicians from 46 institutions in North America with interest and expertise in aplastic anemia, inherited bone marrow failure syndromes, and myelodysplastic syndromes. The NAPAAC Bone Marrow Failure Diagnosis and Care Guidelines Working Group was established with the charge of harmonizing the approach to the diagnostic workup of aplastic anemia in an effort to standardize best practices in the field. This document outlines the rationale for initial evaluations in pediatric patients presenting with signs and symptoms concerning for severe aplastic anemia.


Subject(s)
Anemia, Aplastic/diagnosis , Anemia, Aplastic/pathology , Bone Marrow/pathology , Child , Diagnosis, Differential , Fetal Hemoglobin/analysis , HLA Antigens/analysis , Humans , North America , Severity of Illness Index
11.
Pediatr Blood Cancer ; 67(12): e28748, 2020 12.
Article in English | MEDLINE | ID: mdl-33025707

ABSTRACT

BACKGROUND: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA. PROCEDURE: Patients ≥2 years of age received L-leucine 700 mg/m2 orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595). RESULTS: This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy. CONCLUSIONS: L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA.


Subject(s)
Anemia, Diamond-Blackfan/therapy , Blood Transfusion/methods , Leucine/therapeutic use , Adolescent , Adult , Anemia, Diamond-Blackfan/pathology , Child , Child, Preschool , Combined Modality Therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pilot Projects , Prognosis , Young Adult
12.
Proc Natl Acad Sci U S A ; 119(45): e2215625119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36264843
13.
Transfusion ; 59(8): 2528-2531, 2019 08.
Article in English | MEDLINE | ID: mdl-31111963

ABSTRACT

BACKGROUND: The diagnosis of autoimmune hemolytic anemia (AIHA) can be challenging since the direct antiglobulin test (DAT) has been reported to be falsely negative in 3%-11% of cases. In children with anemia, laboratory and/or clinical evidence of hemolysis and a negative DAT, clinicians should consider further specialized testing to confirm AIHA to accurately diagnose and treat this uncommon pediatric entity. STUDY DESIGN AND METHODS: A retrospective chart review was undertaken at a large tertiary care academic pediatric hematology practice to describe our experience with DAT-negative AIHA. RESULTS: From January 1, 2010 through August 1, 2016, 10 children were described who had clinical and laboratory evidence of AIHA, a negative DAT, and further specialized serologic testing confirming this diagnosis. CONCLUSION: This case series highlights the need for further serologic workup when a child's clinical presentation is highly consistent with AIHA despite a negative DAT.


Subject(s)
Anemia, Hemolytic, Autoimmune/blood , Anemia, Hemolytic, Autoimmune/diagnosis , Coombs Test , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Retrospective Studies
14.
Mol Med ; 24(1): 11, 2018 03 23.
Article in English | MEDLINE | ID: mdl-30134792

ABSTRACT

Erythropoiesis is a tightly-regulated and complex process originating in the bone marrow from a multipotent stem cell and terminating in a mature, enucleated erythrocyte.Altered red cell production can result from the direct impairment of medullary erythropoiesis, as seen in the thalassemia syndromes, inherited bone marrow failure as well as in the anemia of chronic disease. Alternatively, in disorders such as sickle cell disease (SCD) as well as enzymopathies and membrane defects, medullary erythropoiesis is not, or only minimally, directly impaired. Despite these differences in pathophysiology, therapies have traditionally been non-specific, limited to symptomatic control of anemia via packed red blood cell (pRBC) transfusion, resulting in iron overload and the eventual need for iron chelation or splenectomy to reduce defective red cell destruction. Likewise, in polycythemia vera overproduction of red cells has historically been dealt with by non-specific myelosuppression or phlebotomy. With a deeper understanding of the molecular mechanisms underlying disease pathophysiology, new therapeutic targets have been identified including induction of fetal hemoglobin, interference with aberrant signaling pathways and gene therapy for definitive cure. This review, utilizing some representative disorders of erythropoiesis, will highlight novel therapeutic modalities currently in development for treatment of red cell disorders.


Subject(s)
Erythropoiesis , Hematologic Diseases/therapy , Animals , Genetic Therapy , Hematologic Diseases/metabolism , Humans
15.
Am J Hematol ; 93(4): 494-503, 2018 08.
Article in English | MEDLINE | ID: mdl-29274096

ABSTRACT

Studies of human erythropoiesis have relied, for the most part, on the in vitro differentiation of hematopoietic stem and progenitor cells (HSPC) from different sources. Here, we report that despite the common core erythroid program that exists between cord blood (CB)- and peripheral blood (PB)-HSPC induced toward erythroid differentiation in vitro, significant functional differences exist. We undertook a comparative analysis of human erythropoiesis using these two different sources of HSPC. Upon in vitro erythroid differentiation, CB-derived cells proliferated 4-fold more than PB-derived cells. However, CB-derived cells exhibited a delayed kinetics of differentiation, resulting in an increased number of progenitors, notably colony-forming unit (CFU-E). The phenotypes of early erythroid differentiation stages also differed between the two sources with a significantly higher percentage of IL3R- GPA- CD34+ CD36+ cells generated from PB- than CB-HSPCs. This subset was found to generate both burst-forming unit (BFU-E) and CFU-E colonies in colony-forming assays. To further understand the differences between CB- and PB-HSPC, cells at eight stages of erythroid differentiation were sorted from each of the two sources and their transcriptional profiles were compared. We document differences at the CD34, BFU-E, poly- and orthochromatic stages. Genes exhibiting the most significant differences in expression between HSPC sources clustered into cell cycle- and autophagy-related pathways. Altogether, our studies provide a qualitative and quantitative comparative analysis of human erythropoiesis, highlighting the impact of the developmental origin of HSPCs on erythroid differentiation.


Subject(s)
Aging/blood , Erythroid Precursor Cells/cytology , Erythropoiesis/physiology , Adult , Antigens, CD34/analysis , Cells, Cultured , Colony-Forming Units Assay , Erythroid Precursor Cells/drug effects , Erythropoiesis/genetics , Erythropoietin/pharmacology , Fetal Blood/cytology , Humans , Infant, Newborn , Transcriptome
16.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23135403

ABSTRACT

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Subject(s)
Erythroblasts/metabolism , Erythropoiesis , Heme/biosynthesis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteins/metabolism , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Animals , Disease Models, Animal , Erythroblasts/cytology , Ferrochelatase/metabolism , Genetic Complementation Test , Humans , Hydrogen-Ion Concentration , Mice , Mitochondria/pathology , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Oxidation-Reduction , Proteins/genetics , Zebrafish/metabolism , ATPase Inhibitory Protein
17.
Curr Opin Hematol ; 24(3): 159-166, 2017 May.
Article in English | MEDLINE | ID: mdl-28099275

ABSTRACT

PURPOSE OF REVIEW: The erythroid progenitors burst-forming unit-erythroid and colony-forming unit-erythroid have a critical role in erythropoiesis. These cells represent a heterogeneous and poorly characterized population with modifiable self-renewal, proliferation and differentiation capabilities. This review focuses on the current state of erythroid progenitor biology with regard to immunophenotypic identification and regulatory programs. In addition, we will discuss the therapeutic implications of using these erythroid progenitors as pharmacologic targets. RECENT FINDINGS: Erythroid progenitors are classically characterized by the appearance of morphologically defined colonies in semisolid cultures. However, these prior systems preclude a more thorough understanding of the composite nature of progenitor populations. Recent studies employing novel flow cytometric and cell-based assays have helped to redefine hematopoiesis, and suggest that erythroid progenitors may arise from different levels of the hematopoietic tree. Moreover, the identification of cell surface marker patterns in human burst-forming unit-erythroid and colony-forming unit-erythroid enhance our ability to perform downstream functional and molecular analyses at the population and single cell level. Advances in these techniques have already revealed novel subpopulations with increased self-renewing capacity, roles for erythroid progenitors in globin gene expression, and insights into pharmacologic mechanisms of glucocorticoids and pomalidomide. SUMMARY: Immunophenotypic and molecular characterization resolves the diversity of erythroid progenitors, and may ultimately lead to the ability to target these progenitors to ameliorate diseases of dyserythropoiesis.


Subject(s)
Anemia/etiology , Anemia/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Erythropoiesis , Anemia/drug therapy , Anemia/pathology , Animals , Biomarkers , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Erythroid Precursor Cells/drug effects , Erythropoiesis/drug effects , Erythropoiesis/genetics , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunophenotyping , Phenotype , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Thalidomide/therapeutic use
19.
Haematologica ; 102(5): 826-834, 2017 05.
Article in English | MEDLINE | ID: mdl-28154085

ABSTRACT

Forkhead box M1 (FOXM1) belongs to the forkhead/winged-helix family of transcription factors and regulates a network of proliferation-associated genes. Its abnormal upregulation has been shown to be a key driver of cancer progression and an initiating factor in oncogenesis. FOXM1 is also highly expressed in stem/progenitor cells and inhibits their differentiation, suggesting that FOXM1 plays a role in the maintenance of multipotency. However, the exact molecular mechanisms by which FOXM1 regulates human stem/progenitor cells are still uncharacterized. To understand the role of FOXM1 in normal hematopoiesis, human cord blood CD34+ cells were transduced with FOXM1 short hairpin ribonucleic acid (shRNA) lentivirus. Knockdown of FOXM1 resulted in a 2-fold increase in erythroid cells compared to myeloid cells. Additionally, knockdown of FOXM1 increased bromodeoxyuridine (BrdU) incorporation in erythroid cells, suggesting greater proliferation of erythroid progenitors. We also observed that the defective phosphorylation of FOXM1 by checkpoint kinase 2 (CHK2) or cyclin-dependent kinases 1/2 (CDK1/2) increased the erythroid population in a manner similar to knockdown of FOXM1. Finally, we found that an inhibitor of FOXM1, forkhead domain inhibitor-6 (FDI-6), increased red blood cell numbers through increased proliferation of erythroid precursors. Overall, our data suggest a novel function of FOXM1 in normal human hematopoiesis.


Subject(s)
Cell Proliferation/genetics , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , Forkhead Box Protein M1/genetics , Antigens, CD34/blood , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cells, Cultured , Checkpoint Kinase 2/metabolism , Erythroid Cells/metabolism , Fetal Blood/cytology , Fetal Blood/metabolism , Forkhead Box Protein M1/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , K562 Cells , Phosphorylation , Pyridines/pharmacology , RNA Interference , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL