Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Gene Ther ; 31(1-2): 31-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37542151

ABSTRACT

Parkinson`s disease (PD) is the second most prevalent neurodegenerative disease, and different gene therapy strategies have been used as experimental treatments. As a proof-of-concept for the treatment of PD, we used SAM, a CRISPR gene activation system, to activate the endogenous tyrosine hydroxylase gene (th) of astrocytes to produce dopamine (DA) in the striatum of 6-OHDA-lesioned rats. Potential sgRNAs within the rat th promoter region were tested, and the expression of the Th protein was determined in the C6 glial cell line. Employing pseudo-lentivirus, the SAM complex and the selected sgRNA were transferred into cultures of rat astrocytes, and gene expression and Th protein synthesis were ascertained; furthermore, DA release into the culture medium was determined by HPLC. The DA-producing astrocytes were implanted into the striatum of 6-OHDA hemiparkinsonian rats. We observed motor behavior improvement in the lesioned rats that received DA-astrocytes compared to lesioned rats receiving astrocytes that did not produce DA. Our data indicate that the SAM-induced expression of the astrocyte´s endogenous th gene can generate DA-producing astrocytes that effectively reduce the motor asymmetry induced by the lesion.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Rats , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Parkinson Disease/metabolism , RNA, Guide, CRISPR-Cas Systems , Oxidopamine , Rats, Sprague-Dawley , Clustered Regularly Interspaced Short Palindromic Repeats , Dopamine/metabolism , Corpus Striatum/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Substantia Nigra/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL