Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Chem Phys ; 151(14): 144506, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615234

ABSTRACT

Micro- and nanoresonators have important applications including sensing, navigation, and biochemical detection. Their performance is quantified using the quality factor Q, which gives the ratio of the energy stored to the energy dissipated per cycle. Metallic glasses are a promising material class for micro- and nanoscale resonators since they are amorphous and can be fabricated precisely into complex shapes on these length scales. To understand the intrinsic dissipation mechanisms that ultimately limit large Q-values in metallic glasses, we perform molecular dynamics simulations to model metallic glass resonators subjected to bending vibrations at low temperatures. We calculate the power spectrum of the kinetic energy, redistribution of energy from the fundamental mode of vibration, and Q vs the kinetic energy per atom K of the excitation. In the harmonic and anharmonic response regimes where there are no atomic rearrangements, we find that Q → ∞ over the time periods we consider (since we do not consider coupling to the environment). We identify a characteristic Kr above which atomic rearrangements occur, and there is significant energy leakage from the fundamental mode to higher frequencies, causing finite Q. Thus, Kr is a critical parameter determining resonator performance. We show that Kr decreases as a power-law, Kr ∼ N-k, with increasing system size N, where k ≈ 1.3. We estimate the critical strain ⟨γr⟩∼ 10-8 for micrometer-sized resonators below which atomic rearrangements do not occur in the millikelvin temperature range, and thus, large Q-values can be obtained when they are operated below γr. We also find that Kr for amorphous resonators is comparable to that for resonators with crystalline order.

2.
Sci Rep ; 7: 43376, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262791

ABSTRACT

Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.

3.
Phys Rev E ; 94(5-1): 052135, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967111

ABSTRACT

Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

SELECTION OF CITATIONS
SEARCH DETAIL