Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nat Immunol ; 25(5): 764-777, 2024 May.
Article in English | MEDLINE | ID: mdl-38609546

ABSTRACT

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Subject(s)
Immunologic Deficiency Syndromes , Nerve Tissue Proteins , Ubiquitins , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Female , Male , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Inflammation/immunology , Inflammation/genetics , B-Lymphocytes/immunology , Loss of Function Mutation , Fibroblasts/metabolism , Fibroblasts/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Mice , Alleles
2.
Nat Immunol ; 21(8): 857-867, 2020 08.
Article in English | MEDLINE | ID: mdl-32601469

ABSTRACT

Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by homozygous or compound heterozygous gain-of-function mutations in MEFV, which encodes pyrin, an inflammasome protein. Heterozygous carrier frequencies for multiple MEFV mutations are high in several Mediterranean populations, suggesting that they confer selective advantage. Among 2,313 Turkish people, we found extended haplotype homozygosity flanking FMF-associated mutations, indicating evolutionarily recent positive selection of FMF-associated mutations. Two pathogenic pyrin variants independently arose >1,800 years ago. Mutant pyrin interacts less avidly with Yersinia pestis virulence factor YopM than with wild-type human pyrin, thereby attenuating YopM-induced interleukin (IL)-1ß suppression. Relative to healthy controls, leukocytes from patients with FMF harboring homozygous or compound heterozygous mutations and from asymptomatic heterozygous carriers released heightened IL-1ß specifically in response to Y. pestis. Y. pestis-infected MefvM680I/M680I FMF knock-in mice exhibited IL-1-dependent increased survival relative to wild-type knock-in mice. Thus, FMF mutations that were positively selected in Mediterranean populations confer heightened resistance to Y. pestis.


Subject(s)
Disease Resistance/genetics , Familial Mediterranean Fever/genetics , Plague , Pyrin/genetics , Selection, Genetic/genetics , Animals , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Disease Resistance/immunology , Haplotypes , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , Mutation , Plague/immunology , Plague/metabolism , Pyrin/immunology , Pyrin/metabolism , Turkey , Virulence Factors/immunology , Virulence Factors/metabolism , Yersinia pestis
3.
N Engl J Med ; 388(24): 2241-2252, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37256972

ABSTRACT

BACKGROUND: Disabling pansclerotic morphea (DPM) is a rare systemic inflammatory disorder, characterized by poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, and squamous-cell carcinoma. The cause is unknown, and mortality is high. METHODS: We evaluated four patients from three unrelated families with an autosomal dominant pattern of inheritance of DPM. Genomic sequencing independently identified three heterozygous variants in a specific region of the gene that encodes signal transducer and activator of transcription 4 (STAT4). Primary skin fibroblast and cell-line assays were used to define the functional nature of the genetic defect. We also assayed gene expression using single-cell RNA sequencing of peripheral-blood mononuclear cells to identify inflammatory pathways that may be affected in DPM and that may respond to therapy. RESULTS: Genome sequencing revealed three novel heterozygous missense gain-of-function variants in STAT4. In vitro, primary skin fibroblasts showed enhanced interleukin-6 secretion, with impaired wound healing, contraction of the collagen matrix, and matrix secretion. Inhibition of Janus kinase (JAK)-STAT signaling with ruxolitinib led to improvement in the hyperinflammatory fibroblast phenotype in vitro and resolution of inflammatory markers and clinical symptoms in treated patients, without adverse effects. Single-cell RNA sequencing revealed expression patterns consistent with an immunodysregulatory phenotype that were appropriately modified through JAK inhibition. CONCLUSIONS: Gain-of-function variants in STAT4 caused DPM in the families that we studied. The JAK inhibitor ruxolitinib attenuated the dermatologic and inflammatory phenotype in vitro and in the affected family members. (Funded by the American Academy of Allergy, Asthma, and Immunology Foundation and others.).


Subject(s)
Autoimmune Diseases , Dermatologic Agents , Janus Kinases , Scleroderma, Systemic , Janus Kinases/antagonists & inhibitors , Nitriles , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrimidines , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Mutation, Missense , Gain of Function Mutation , Dermatologic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use
4.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33108101

ABSTRACT

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Subject(s)
Autoimmune Diseases/genetics , Genetic Diseases, X-Linked/genetics , Inflammation/genetics , Mutation, Missense , Ubiquitin-Activating Enzymes/genetics , Age of Onset , Aged , Aged, 80 and over , Cytokines/blood , Exome/genetics , Genotype , Giant Cell Arteritis/genetics , Humans , Immunoblotting , Male , Middle Aged , Multiple Myeloma/genetics , Myelodysplastic Syndromes/genetics , Polyarteritis Nodosa/genetics , Polychondritis, Relapsing/genetics , Sequence Analysis, DNA , Sweet Syndrome/genetics , Syndrome
5.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Article in English | MEDLINE | ID: mdl-35868845

ABSTRACT

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Subject(s)
Hereditary Autoinflammatory Diseases , NF-kappa B , Protein Kinases/genetics , Amyloidosis , Animals , Cohort Studies , Gain of Function Mutation , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinases/metabolism , Quality of Life , Serum Amyloid A Protein , Syndrome , Tumor Necrosis Factor Inhibitors
6.
Am J Hum Genet ; 103(5): 794-807, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30401460

ABSTRACT

Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.

7.
Ann Rheum Dis ; 80(6): 788-795, 2021 06.
Article in English | MEDLINE | ID: mdl-33619160

ABSTRACT

BACKGROUND: Monogenic autoinflammatory diseases (AID) are caused by mutations in innate immune genes. The effects of these mutations on allergic inflammation are unknown. OBJECTIVES: We investigated allergic, immunological and clinical phenotypes in FMF (familial Mediterranean fever), CAPS (cryopyrin-associated periodic syndrome), TRAPS (tumour necrosis factor receptor-associated periodic syndrome), HIDS (hyper-IgD syndrome), PAPA (pyogenic arthritis, pyoderma gangrenosum and acne), DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), CANDLE (chronic atypical neutrophilic dermatosis, lipodystrophy, elevated temperature) and SAVI (STING-associated vasculopathy of infancy). METHODS: In this cross-sectional study, clinical data were assessed in 425 patients with AID using questionnaires and chart reviews. Comparator data were obtained from public databases. Peripheral blood mononuclear cells obtained from 55 patients were stimulated and CD4+ cytokine production assessed. RESULTS: Clinical laboratory features of Type 2 immunity were elevated in CAPS but reduced in most AID, particularly DADA2. Physician-diagnosed allergic diseases were prevalent in multiple AID, including CAPS and DADA2. T helper 2 (Th2) cells were expanded in CAPS, TRAPS and HIDS; Th9 cells were expanded in HA20. CONCLUSIONS: CAPS is characterised by an enhanced Type 2 signature, whereas FMF and CANDLE are associated with reduced Type 2 responses. DADA2 is associated with reduced Type 2 responses but a high rate of physician-diagnosed allergy. Therefore, NLRP3-driven autoinflammation may promote Type 2 immunity, whereas AID like DADA2 may manifest clinical phenotypes that masquerade as allergic disorders. Further investigations are needed to determine the contribution of autoinflammation to allergic clinical and immunological phenotypes, to improve the treatment of patients with AID.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Familial Mediterranean Fever , Hereditary Autoinflammatory Diseases , Hypersensitivity , Skin Diseases , Adenosine Deaminase , Cross-Sectional Studies , Cryopyrin-Associated Periodic Syndromes/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Humans , Intercellular Signaling Peptides and Proteins/therapeutic use , Leukocytes, Mononuclear , Skin Diseases/genetics
8.
J Clin Immunol ; 39(1): 75-80, 2019 01.
Article in English | MEDLINE | ID: mdl-30574673

ABSTRACT

PURPOSE: Singleton-Merten syndrome manifests as dental dysplasia, glaucoma, psoriasis, aortic calcification, and skeletal abnormalities including tendon rupture and arthropathy. Pathogenic variants in IFIH1 have previously been associated with the classic Singleton-Merten syndrome, while variants in DDX58 has been described in association with a milder phenotype, which is suggested to have a better prognosis. We studied a family with severe, "classic" Singleton-Merten syndrome. METHODS: We undertook clinical phenotyping, next-generation sequencing, and functional studies of type I interferon production in patient whole blood and assessed the type I interferon promoter activity in HEK293 cells transfected with wild-type or mutant DDX58 stimulated with Poly I:C. RESULTS: We demonstrate a DDX58 autosomal dominant gain-of-function mutation, with constitutive upregulation of type I interferon. CONCLUSIONS: DDX58 mutations may be associated with the classic features of Singleton-Merten syndrome including dental dysplasia, tendon rupture, and severe cardiac sequela.


Subject(s)
Aortic Diseases/genetics , DEAD Box Protein 58/genetics , Dental Enamel Hypoplasia/genetics , Metacarpus/abnormalities , Muscular Diseases/genetics , Odontodysplasia/genetics , Osteoporosis/genetics , Vascular Calcification/genetics , Adult , Cell Line , Female , Gain of Function Mutation/genetics , HEK293 Cells , Humans , Interferon Type I/genetics , Male , Middle Aged , Phenotype , Promoter Regions, Genetic/genetics , Receptors, Immunologic
9.
Am J Med Genet A ; 173(12): 3231-3237, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29052317

ABSTRACT

Joubert syndrome is a neurodevelopmental disorder, characterized by malformation of the mid and hindbrain leading to the pathognomonic molar tooth appearance of the brainstem and cerebellum on axial MRI. Core clinical manifestations include hypotonia, tachypnea/apnea, ataxia, ocular motor apraxia, and developmental delay of varying degrees. In addition, a subset of patients has retinal dystrophy, chorioretinal colobomas, hepatorenal fibrocystic disease, and polydactyly. Joubert syndrome exhibits genetic heterogeneity, with mutations identified in more than 30 genes, including INPP5E, a gene encoding inositol polyphosphate 5-phosphatase E, which is important in the development and stability of the primary cilium. Here, we report the detailed clinical phenotypes of two sisters with a novel homozygous variant in INPP5E (NM_019892.4: c.1565G>C, NP_063945.2: p.Gly552Ala), expanding the phenotype associated with Joubert syndrome type 1. Expression studies using patient-derived fibroblasts showed changes in mRNA and protein levels. Analysis of fibroblasts from patients revealed that a significant number of cells had shorter or no cilia, indicating defects in ciliogenesis, and cilia maintenance.


Subject(s)
Abnormalities, Multiple/genetics , Cerebellum/abnormalities , Ciliopathies/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Phosphoric Monoester Hydrolases/genetics , Retina/abnormalities , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/pathology , Adolescent , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cilia/pathology , Ciliopathies/diagnosis , Ciliopathies/pathology , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/pathology , Female , Fibroblasts/pathology , Homozygote , Humans , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/pathology , Magnetic Resonance Imaging , Mutation , Pedigree , Phenotype , Retina/diagnostic imaging , Retina/pathology , Young Adult
10.
Am J Med Genet A ; 173(12): i, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29136352

ABSTRACT

The cover image, by Isabel Hardee et al., is based on the Clinical Report Defective ciliogenesis in INPP5E-related Joubert syndrome, DOI: 10.1002/ajmg.a.38376. Design Credit: Darryl Leja.

11.
Genet Med ; 18(6): 608-17, 2016 06.
Article in English | MEDLINE | ID: mdl-26562225

ABSTRACT

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608-617.


Subject(s)
Exome Sequencing/methods , Exome/genetics , Rare Diseases/genetics , Rare Diseases/physiopathology , Animals , Computational Biology , Databases, Genetic , Disease Models, Animal , Genetic Association Studies , Genetic Variation , Humans , Mice , National Institutes of Health (U.S.) , Patients , Phenotype , Rare Diseases/diagnosis , Rare Diseases/epidemiology , United States , Zebrafish
12.
Genet Med ; 16(10): 741-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24784157

ABSTRACT

PURPOSE: Using exome sequence data from 159 families participating in the National Institutes of Health Undiagnosed Diseases Program, we evaluated the number and inheritance mode of reportable incidental sequence variants. METHODS: Following the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings from next-generation sequencing, we extracted variants in 56 genes from the exome sequence data of 543 subjects and determined the reportable incidental findings for each participant. We also defined variant status as inherited or de novo for those with available parental sequence data. RESULTS: We identified 14 independent reportable variants in 159 (8.8%) families. For nine families with parental sequence data in our cohort, a parent transmitted the variant to one or more children (nine minor children and four adult children). The remaining five variants occurred in adults for whom parental sequences were unavailable. CONCLUSION: Our results are consistent with the expectation that a small percentage of exomes will result in identification of an incidental finding under the American College of Medical Genetics and Genomics recommendations. Additionally, our analysis of family sequence data highlights that genome and exome sequencing of families has unavoidable implications for immediate family members and therefore requires appropriate counseling for the family.


Subject(s)
Exome/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Sequence Analysis, DNA/methods , Adolescent , Adult , Child , Cohort Studies , Family Health , Female , Genetic Counseling , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genome, Human/genetics , Humans , Incidental Findings , Male , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Middle Aged , National Institutes of Health (U.S.) , United States , Young Adult
13.
Genet Med ; 14(1): 51-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22237431

ABSTRACT

PURPOSE: This report describes the National Institutes of Health Undiagnosed Diseases Program, details the Program's application of genomic technology to establish diagnoses, and details the Program's success rate during its first 2 years. METHODS: Each accepted study participant was extensively phenotyped. A subset of participants and selected family members (29 patients and 78 unaffected family members) was subjected to an integrated set of genomic analyses including high-density single-nucleotide polymorphism arrays and whole exome or genome analysis. RESULTS: Of 1,191 medical records reviewed, 326 patients were accepted and 160 were admitted directly to the National Institutes of Health Clinical Center on the Undiagnosed Diseases Program service. Of those, 47% were children, 55% were females, and 53% had neurologic disorders. Diagnoses were reached on 39 participants (24%) on clinical, biochemical, pathologic, or molecular grounds; 21 diagnoses involved rare or ultra-rare diseases. Three disorders were diagnosed based on single-nucleotide polymorphism array analysis and three others using whole exome sequencing and filtering of variants. Two new disorders were discovered. Analysis of the single-nucleotide polymorphism array study cohort revealed that large stretches of homozygosity were more common in affected participants relative to controls. CONCLUSION: The National Institutes of Health Undiagnosed Diseases Program addresses an unmet need, i.e., the diagnosis of patients with complex, multisystem disorders. It may serve as a model for the clinical application of emerging genomic technologies and is providing insights into the characteristics of diseases that remain undiagnosed after extensive clinical workup.


Subject(s)
Government Programs , National Health Programs , National Institutes of Health (U.S.) , Rare Diseases/diagnosis , Rare Diseases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomedical Research , Child , Child, Preschool , Clinical Protocols , DNA Copy Number Variations , Exome , Female , Homozygote , Humans , Infant , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Rare Diseases/mortality , United States , Young Adult
14.
Front Immunol ; 12: 811473, 2021.
Article in English | MEDLINE | ID: mdl-35095905

ABSTRACT

The deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessively inherited disease that has undergone extensive phenotypic expansion since being first described in patients with fevers, recurrent strokes, livedo racemosa, and polyarteritis nodosa in 2014. It is now recognized that patients may develop multisystem disease that spans multiple medical subspecialties. Here, we describe the findings from a large single center longitudinal cohort of 60 patients, the broad phenotypic presentation, as well as highlight the cohort's experience with hematopoietic cell transplantation and COVID-19. Disease manifestations could be separated into three major phenotypes: inflammatory/vascular, immune dysregulatory, and hematologic, however, most patients presented with significant overlap between these three phenotype groups. The cardinal features of the inflammatory/vascular group included cutaneous manifestations and stroke. Evidence of immune dysregulation was commonly observed, including hypogammaglobulinemia, absent to low class-switched memory B cells, and inadequate response to vaccination. Despite these findings, infectious complications were exceedingly rare in this cohort. Hematologic findings including pure red cell aplasia (PRCA), immune-mediated neutropenia, and pancytopenia were observed in half of patients. We significantly extended our experience using anti-TNF agents, with no strokes observed in 2026 patient months on TNF inhibitors. Meanwhile, hematologic and immune features had a more varied response to anti-TNF therapy. Six patients received a total of 10 allogeneic hematopoietic cell transplant (HCT) procedures, with secondary graft failure necessitating repeat HCTs in three patients, as well as unplanned donor cell infusions to avoid graft rejection. All transplanted patients had been on anti-TNF agents prior to HCT and received varying degrees of reduced-intensity or non-myeloablative conditioning. All transplanted patients are still alive and have discontinued anti-TNF therapy. The long-term follow up afforded by this large single-center study underscores the clinical heterogeneity of DADA2 and the potential for phenotypes to evolve in any individual patient.


Subject(s)
Adenosine Deaminase/deficiency , Intercellular Signaling Peptides and Proteins/deficiency , Adolescent , Adult , Aged , COVID-19/metabolism , Child , Child, Preschool , Cohort Studies , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Longitudinal Studies , Male , Middle Aged , Tumor Necrosis Factor Inhibitors/metabolism , Young Adult
15.
Front Med (Lausanne) ; 4: 62, 2017.
Article in English | MEDLINE | ID: mdl-28603714

ABSTRACT

Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research.

16.
Cancer Nurs ; 26(6): 421-30, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15022973

ABSTRACT

Persons undergoing genetic testing for an inherited predisposition to cancer often raise questions about recommendations for follow-up care. Missing from current guidelines is consideration of the role of estrogens for BRCA1/BRCA2 mutation carriers. Potential implications of hormones for risk of cancer and effectiveness of risk-reduction strategies need to be considered in the design of comprehensive guidelines for high-risk women. Patients who are mutation carriers may ask questions about the use of oral contraceptives, hormone replacement, and utility of current screening modalities. Controversy exists, even when considering these issues for the general population, but become more imperative when considering young, unaffected women who carry an inherited genetic mutation making decisions that may have long-term health consequences. Many patients have considered estrogen ablation via prophylactic surgeries as risk-reduction interventions. This article reviews data regarding these issues, makes recommendations based on available information, and offers future perspectives for those identified at high risk for cancer because of genetic predisposition. Although questions remain regarding the potential implications of hormones for risk of cancer and effectiveness of risk-reduction strategies, all information should be considered when educating and caring for such patients.


Subject(s)
Breast Neoplasms/prevention & control , Estrogens/therapeutic use , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Ovarian Neoplasms/prevention & control , Breast Neoplasms/genetics , Contraceptives, Oral, Hormonal , Decision Making , Estrogen Replacement Therapy , Female , Humans , Mastectomy , Ovarian Neoplasms/genetics , Ovariectomy
17.
Oncol Nurs Forum ; 30(5): 803-8, 2003.
Article in English | MEDLINE | ID: mdl-12949593

ABSTRACT

PURPOSE/OBJECTIVES: To provide a description of the inception and evolution of the Breast Cancer Education and Risk Assessment Program. DATA SOURCES: Computerized database (e.g., Personal Family History Risk Assessment Model, Knowledge Assessment Tool, risk perception, evaluation form) and author experience. DATA SYNTHESIS: A total of 749 women participated in the group education and risk-assessment program from March 1999 through March 2002. Advanced practice nurses provided information about calculated risks, corrected misperceptions among participants, and highlighted options available to decrease breast cancer risk. Knowledge scores improved, and, in general, participants were very satisfied with the content and comprehensibility of the educational session. CONCLUSIONS: Results from the evaluation of the Breast Cancer Education and Risk Assessment Program suggest that group education is a viable and acceptable way to bring new advances in breast cancer prevention to large groups of women. The data sources support the conclusion that women can be effectively taught general breast cancer risk information in a group setting and be placed into specific risk categories to streamline discussion of risk-management options and relevant research studies. IMPLICATIONS FOR NURSING: Advanced practice nurses are a vital link in the assessment of women at high risk for breast cancer, education, and appropriate referrals for management options and relevant clinical trials.


Subject(s)
Breast Neoplasms/nursing , Carcinoma in Situ/nursing , Carcinoma, Lobular/nursing , Oncology Nursing/education , Oncology Nursing/methods , Patient Education as Topic/trends , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Carcinoma in Situ/genetics , Carcinoma in Situ/prevention & control , Carcinoma, Lobular/genetics , Carcinoma, Lobular/prevention & control , Female , Genetic Counseling/methods , Genetic Predisposition to Disease/genetics , Genetics/education , Health Knowledge, Attitudes, Practice , Humans , Middle Aged , Models, Educational , Nurse's Role , Nursing Evaluation Research , Nursing Faculty Practice , Patient Education as Topic/methods , Postmenopause , Risk Assessment/methods , Risk Assessment/trends , Women's Health
SELECTION OF CITATIONS
SEARCH DETAIL