Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 170(6): 1164-1174.e6, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886384

ABSTRACT

Although most cervical human papillomavirus type 16 (HPV16) infections become undetectable within 1-2 years, persistent HPV16 causes half of all cervical cancers. We used a novel HPV whole-genome sequencing technique to evaluate an exceptionally large collection of 5,570 HPV16-infected case-control samples to determine whether viral genetic variation influences risk of cervical precancer and cancer. We observed thousands of unique HPV16 genomes; very few women shared the identical HPV16 sequence, which should stimulate a careful re-evaluation of the clinical implications of HPV mutation rates, transmission, clearance, and persistence. In case-control analyses, HPV16 in the controls had significantly more amino acid changing variants throughout the genome. Strikingly, E7 was devoid of variants in precancers/cancers compared to higher levels in the controls; we confirmed this in cancers from around the world. Strict conservation of the 98 amino acids of E7, which disrupts Rb function, is critical for HPV16 carcinogenesis, presenting a highly specific target for etiologic and therapeutic research.


Subject(s)
Alphapapillomavirus/genetics , Alphapapillomavirus/isolation & purification , Carcinoma/virology , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/virology , Adult , Alphapapillomavirus/classification , Case-Control Studies , Female , Genome, Viral , Humans , Middle Aged , Papillomavirus E7 Proteins/genetics , Polymorphism, Single Nucleotide , Young Adult
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975951

ABSTRACT

Transcription factor binding sites (TFBSs) are essential for gene regulation, but the number of known TFBSs remains limited. We aimed to discover and characterize unknown TFBSs by developing a computational pipeline for analyzing ChIP-seq (chromatin immunoprecipitation followed by sequencing) data. Applying it to the latest ENCODE ChIP-seq data for human and mouse, we found that using the irreproducible discovery rate as a quality-control criterion resulted in many experiments being unnecessarily discarded. By contrast, the number of motif occurrences in ChIP-seq peak regions provides a highly effective criterion, which is reliable even if supported by only one experimental replicate. In total, we obtained 2,058 motifs from 1,089 experiments for 354 human TFs and 163 motifs from 101 experiments for 34 mouse TFs. Among these motifs, 487 have not previously been reported. Mapping the canonical motifs to the human genome reveals a high TFBS density ±2 kb around transcription start sites (TSSs) with a peak at -50 bp. On average, a promoter contains 5.7 TFBSs. However, 70% of TFBSs are in introns (41%) and intergenic regions (29%), whereas only 12% are in promoters (-1 kb to +100 bp from TSSs). Notably, some TFs (e.g., CTCF, JUN, JUNB, and NFE2) have motifs enriched in intergenic regions, including enhancers. We inferred 142 cobinding TF pairs and 186 (including 115 completely) tethered binding TF pairs, indicating frequent interactions between TFs and a higher frequency of tethered binding than cobinding. This study provides a large number of previously undocumented motifs and insights into the biological and genomic features of TFBSs.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Nucleotide Motifs , Transcription Factors/metabolism , Animals , Binding Sites , Humans , Mice , Promoter Regions, Genetic
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34725254

ABSTRACT

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Subject(s)
Plants/genetics , Altitude , Chile , Climate Change , Desert Climate , Ecosystem , Genomics/methods , Phylogeny , Soil , Soil Microbiology
4.
Mol Biol Evol ; 37(8): 2440-2449, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32243542

ABSTRACT

Purifying (negative) natural selection is a hallmark of functional biological sequences, and can be detected in protein-coding genes using the ratio of nonsynonymous to synonymous substitutions per site (dN/dS). However, when two genes overlap the same nucleotide sites in different frames, synonymous changes in one gene may be nonsynonymous in the other, perturbing dN/dS. Thus, scalable methods are needed to estimate functional constraint specifically for overlapping genes (OLGs). We propose OLGenie, which implements a modification of the Wei-Zhang method. Assessment with simulations and controls from viral genomes (58 OLGs and 176 non-OLGs) demonstrates low false-positive rates and good discriminatory ability in differentiating true OLGs from non-OLGs. We also apply OLGenie to the unresolved case of HIV-1's putative antisense protein gene, showing significant purifying selection. OLGenie can be used to study known OLGs and to predict new OLGs in genome annotation. Software and example data are freely available at https://github.com/chasewnelson/OLGenie (last accessed April 10, 2020).


Subject(s)
Genes, Overlapping , Genetic Techniques , Selection, Genetic , Silent Mutation , Software , HIV-1/genetics
6.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27974564

ABSTRACT

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Subject(s)
Arterivirus Infections/veterinary , Arterivirus/physiology , Biological Evolution , Host-Pathogen Interactions , Monkey Diseases/virology , Animals , Host-Pathogen Interactions/genetics , Macaca fascicularis , Monkey Diseases/genetics , Open Reading Frames , Polymorphism, Single Nucleotide , RNA, Viral , Selection, Genetic , Virus Internalization , Virus Replication
7.
J Virol ; 90(1): 545-52, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26491171

ABSTRACT

UNLABELLED: Anti-HIV CD8 T cells included in therapeutic treatments will need to target epitopes that do not accumulate escape mutations. Identifying the epitopes that do not accumulate variants but retain immunogenicity depends on both host major histocompatibility complex (MHC) genetics and the likelihood for an epitope to tolerate variation. We previously found that immune escape during acute SIV infection is conditional; the accumulation of mutations in T cell epitopes is limited, and the rate of accumulation depends on the number of epitopes being targeted. We have now tested the hypothesis that conditional immune escape extends into chronic SIV infection and that epitopes with a preserved wild-type sequence have the potential to elicit epitope-specific CD8 T cells. We deep sequenced simian immunodeficiency virus (SIV) from Mauritian cynomolgus macaques (MCMs) that were homozygous and heterozygous for the M3 MHC haplotype and had been infected with SIV for about 1 year. When interrogating variation within individual epitopes restricted by M3 MHC alleles, we found three categories of epitopes, which we called categories A, B, and C. Category B epitopes readily accumulated variants in M3-homozygous MCMs, but this was less common in M3-heterozygous MCMs. We then determined that chronic CD8 T cells specific for these epitopes were more likely preserved in the M3-heterozygous MCMs than M3-homozygous MCMs. We provide evidence that epitopes known to escape from chronic CD8 T cell responses in animals that are homozygous for a set of MHC alleles are preserved and retain immunogenicity in a host that is heterozygous for the same MHC alleles. IMPORTANCE: Anti-HIV CD8 T cells that are part of therapeutic treatments will need to target epitopes that do not accumulate escape mutations. Defining these epitope sequences is a necessary precursor to designing approaches that enhance the functionality of CD8 T cells with the potential to control virus replication during chronic infection or after reactivation of latent virus. Using MHC-homozygous and -heterozygous Mauritian cynomolgus macaques, we have now obtained evidence that epitopes known to escape from chronic CD8 T cell responses in animals that are MHC homozygous are preserved and retain immunogenicity in a host that is heterozygous for the same MHC alleles. Importantly, our findings support the conditional immune escape hypothesis, such that the potential to present a greater number of CD8 T cell epitopes within a single animal can delay immune escape in targeted epitopes. As a result, certain epitope sequences can retain immunogenicity into chronic infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/genetics , Immune Evasion , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , Animals , Chronic Disease , Heterozygote , High-Throughput Nucleotide Sequencing , Homozygote , Macaca fascicularis , Major Histocompatibility Complex , RNA, Viral/genetics , Simian Immunodeficiency Virus/genetics
8.
J Virol ; 90(15): 6724-6737, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27170760

ABSTRACT

UNLABELLED: Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. IMPORTANCE: Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts.


Subject(s)
Arterivirus Infections/epidemiology , Biological Evolution , Flaviviridae Infections/epidemiology , Genetic Variation , Lentivirus Infections/epidemiology , Viral Load , Africa/epidemiology , Animals , Animals, Wild , Arterivirus/genetics , Arterivirus/pathogenicity , Arterivirus Infections/genetics , Arterivirus Infections/virology , Flaviviridae/genetics , Flaviviridae/pathogenicity , Flaviviridae Infections/genetics , Flaviviridae Infections/virology , Genome, Viral , Haplorhini , Humans , Lentivirus/genetics , Lentivirus/pathogenicity , Lentivirus Infections/genetics , Lentivirus Infections/virology , Phylogeny , Prevalence
9.
Bioinformatics ; 31(22): 3709-11, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26227143

ABSTRACT

UNLABELLED: New applications of next-generation sequencing technologies use pools of DNA from multiple individuals to estimate population genetic parameters. However, no publicly available tools exist to analyse single-nucleotide polymorphism (SNP) calling results directly for evolutionary parameters important in detecting natural selection, including nucleotide diversity and gene diversity. We have developed SNPGenie to fill this gap. The user submits a FASTA reference sequence(s), a Gene Transfer Format (.GTF) file with CDS information and a SNP report(s) in an increasing selection of formats. The program estimates nucleotide diversity, distance from the reference and gene diversity. Sites are flagged for multiple overlapping reading frames, and are categorized by polymorphism type: nonsynonymous, synonymous, or ambiguous. The results allow single nucleotide, single codon, sliding window, whole gene and whole genome/population analyses that aid in the detection of positive and purifying natural selection in the source population. AVAILABILITY AND IMPLEMENTATION: SNPGenie version 1.2 is a Perl program with no additional dependencies. It is free, open-source, and available for download at https://github.com/hugheslab/snpgenie. CONTACT: nelsoncw@email.sc.edu or austin@biol.sc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biological Evolution , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Selection, Genetic , Software , Genetics, Population , Hemagglutinins/genetics , Humans , Influenza A Virus, H5N1 Subtype/genetics , Neuraminidase/genetics
10.
Virus Evol ; 10(1): veae013, 2024.
Article in English | MEDLINE | ID: mdl-38455683

ABSTRACT

High-coverage sequencing allows the study of variants occurring at low frequencies within samples, but is susceptible to false-positives caused by sequencing error. Ion Torrent has a very low single nucleotide variant (SNV) error rate and has been employed for the majority of human papillomavirus (HPV) whole genome sequences. However, benchmarking of intrahost SNVs (iSNVs) has been challenging, partly due to limitations imposed by the HPV life cycle. We address this problem by deep sequencing three replicates for each of 31 samples of HPV type 18 (HPV18). Errors, defined as iSNVs observed in only one of three replicates, are dominated by C→T (G→A) changes, independently of trinucleotide context. True iSNVs, defined as those observed in all three replicates, instead show a more diverse SNV type distribution, with particularly elevated C→T rates in CCG context (CCG→CTG; CGG→CAG) and C→A rates in ACG context (ACG→AAG; CGT→CTT). Characterization of true iSNVs allowed us to develop two methods for detecting true variants: (1) VCFgenie, a dynamic binomial filtering tool which uses each variant's allele count and coverage instead of fixed frequency cut-offs; and (2) a machine learning binary classifier which trains eXtreme Gradient Boosting models on variant features such as quality and trinucleotide context. Each approach outperforms fixed-cut-off filtering of iSNVs, and performance is enhanced when both are used together. Our results provide improved methods for identifying true iSNVs in within-host applications across sequencing platforms, specifically using HPV18 as a case study.

11.
Tumour Virus Res ; 15: 200258, 2023 06.
Article in English | MEDLINE | ID: mdl-36812987

ABSTRACT

Human papillomavirus (HPV) causes virtually all cervical cancers and many cancers at other anatomical sites in both men and women. However, only 12 of 448 known HPV types are currently classified as carcinogens, and even the most carcinogenic type - HPV16 - only rarely leads to cancer. HPV is therefore necessary but insufficient for cervical cancer, with other contributing factors including host and viral genetics. Over the last decade, HPV whole genome sequencing has established that even fine-scale within-type HPV variation influences precancer/cancer risks, and that these risks vary by histology and host race/ethnicity. In this review, we place these findings in the context of the HPV life cycle and evolution at various levels of viral diversity: between-type, within-type, and within-host. We also discuss key concepts necessary for interpreting HPV genomic data, including features of the viral genome; events leading to carcinogenesis; the role of APOBEC3 in HPV infection and evolution; and methodologies that use deep (high-coverage) sequencing to characterize within-host variation, as opposed to relying on a single representative (consensus) sequence. Given the continued high burden of HPV-associated cancers, understanding HPV carcinogenicity remains important for better understanding, preventing, and treating cancers attributable to infection.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Uterine Cervical Neoplasms/pathology , Genomics , Human papillomavirus 16/genetics , Carcinogenesis/genetics
12.
Theor Biol Med Model ; 8: 9, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21501505

ABSTRACT

BACKGROUND: Avida is a computer program that performs evolution experiments with digital organisms. Previous work has used the program to study the evolutionary origin of complex features, namely logic operations, but has consistently used extremely large mutational fitness effects. The present study uses Avida to better understand the role of low-impact mutations in evolution. RESULTS: When mutational fitness effects were approximately 0.075 or less, no new logic operations evolved, and those that had previously evolved were lost. When fitness effects were approximately 0.2, only half of the operations evolved, reflecting a threshold for selection breakdown. In contrast, when Avida's default fitness effects were used, all operations routinely evolved to high frequencies and fitness increased by an average of 20 million in only 10,000 generations. CONCLUSIONS: Avidian organisms evolve new logic operations only when mutations producing them are assigned high-impact fitness effects. Furthermore, purifying selection cannot protect operations with low-impact benefits from mutational deterioration. These results suggest that selection breaks down for low-impact mutations below a certain fitness effect, the selection threshold. Experiments using biologically relevant parameter settings show the tendency for increasing genetic load to lead to loss of biological functionality. An understanding of such genetic deterioration is relevant to human disease, and may be applicable to the control of pathogens by use of lethal mutagenesis.


Subject(s)
Biological Evolution , Computer Simulation , Models, Biological , Mutation/genetics , Software , Genetic Drift , Genetics, Population , Humans , Logic , Phenotype , Selection, Genetic , User-Computer Interface
13.
Virology ; 558: 145-151, 2021 06.
Article in English | MEDLINE | ID: mdl-33774510

ABSTRACT

At least six small alternative-frame open reading frames (ORFs) overlapping well-characterized SARS-CoV-2 genes have been hypothesized to encode accessory proteins. Researchers have used different names for the same ORF or the same name for different ORFs, resulting in erroneous homological and functional inferences. We propose standard names for these ORFs and their shorter isoforms, developed in consultation with the Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. We recommend calling the 39 codon Spike-overlapping ORF ORF2b; the 41, 57, and 22 codon ORF3a-overlapping ORFs ORF3c, ORF3d, and ORF3b; the 33 codon ORF3d isoform ORF3d-2; and the 97 and 73 codon Nucleocapsid-overlapping ORFs ORF9b and ORF9c. Finally, we document conflicting usage of the name ORF3b in 32 studies, and consequent erroneous inferences, stressing the importance of reserving identical names for homologs. We recommend that authors referring to these ORFs provide lengths and coordinates to minimize ambiguity caused by prior usage of alternative names.


Subject(s)
Open Reading Frames , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Terminology as Topic , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics
14.
Virus Evol ; 7(1): veab041, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34035952

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in humans and a wide range of animal species. Its rapid global spread has resulted in a major public health emergency, necessitating commensurately rapid research to improve control strategies. In particular, the ability to effectively retrace transmission chains in outbreaks remains a major challenge, partly due to our limited understanding of the virus' underlying evolutionary dynamics within and between hosts. We used high-throughput sequencing whole-genome data coupled with bottleneck analysis to retrace the pathways of viral transmission in two nosocomial outbreaks that were previously characterised by epidemiological and phylogenetic methods. Additionally, we assessed the mutational landscape, selection pressures, and diversity at the within-host level for both outbreaks. Our findings show evidence of within-host selection and transmission of variants between samples. Both bottleneck and diversity analyses highlight within-host and consensus-level variants shared by putative source-recipient pairs in both outbreaks, suggesting that certain within-host variants in these outbreaks may have been transmitted upon infection rather than arising de novo independently within multiple hosts. Overall, our findings demonstrate the utility of combining within-host diversity and bottleneck estimations for elucidating transmission events in SARS-CoV-2 outbreaks, provide insight into the maintenance of viral genetic diversity, provide a list of candidate targets of positive selection for further investigation, and demonstrate that within-host variants can be transferred between patients. Together these results will help in developing strategies to understand the nature of transmission events and curtail the spread of SARS-CoV-2.

15.
Nat Microbiol ; 6(6): 731-745, 2021 06.
Article in English | MEDLINE | ID: mdl-33875847

ABSTRACT

Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ion Channels/metabolism , Leukocidins/genetics , Leukocidins/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism , Animals , CD11b Antigen/genetics , CD11b Antigen/metabolism , Genetic Variation , Humans , Ion Channels/genetics , Mice, Inbred C57BL , Phagocytes/metabolism , Phagocytes/microbiology , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics
16.
Science ; 372(6543): 725-729, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33888597

ABSTRACT

Effects of radiation exposure from the Chernobyl nuclear accident remain a topic of interest. We investigated germline de novo mutations (DNMs) in children born to parents employed as cleanup workers or exposed to occupational and environmental ionizing radiation after the accident. Whole-genome sequencing of 130 children (born 1987-2002) and their parents did not reveal an increase in the rates, distributions, or types of DNMs relative to the results of previous studies. We find no elevation in total DNMs, regardless of cumulative preconception gonadal paternal [mean = 365 milligrays (mGy), range = 0 to 4080 mGy] or maternal (mean = 19 mGy, range = 0 to 550 mGy) exposure to ionizing radiation. Thus, we conclude that, over this exposure range, evidence is lacking for a substantial effect on germline DNMs in humans, suggesting minimal impact from transgenerational genetic effects.

17.
Elife ; 92020 10 01.
Article in English | MEDLINE | ID: mdl-33001029

ABSTRACT

Understanding the emergence of novel viruses requires an accurate and comprehensive annotation of their genomes. Overlapping genes (OLGs) are common in viruses and have been associated with pandemics but are still widely overlooked. We identify and characterize ORF3d, a novel OLG in SARS-CoV-2 that is also present in Guangxi pangolin-CoVs but not other closely related pangolin-CoVs or bat-CoVs. We then document evidence of ORF3d translation, characterize its protein sequence, and conduct an evolutionary analysis at three levels: between taxa (21 members of Severe acute respiratory syndrome-related coronavirus), between human hosts (3978 SARS-CoV-2 consensus sequences), and within human hosts (401 deeply sequenced SARS-CoV-2 samples). ORF3d has been independently identified and shown to elicit a strong antibody response in COVID-19 patients. However, it has been misclassified as the unrelated gene ORF3b, leading to confusion. Our results liken ORF3d to other accessory genes in emerging viruses and highlight the importance of OLGs.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Evolution, Molecular , Genes, Overlapping , Genes, Viral , Host Specificity/genetics , Open Reading Frames/genetics , Pandemics , Pneumonia, Viral/virology , Viral Proteins/genetics , Amino Acid Sequence , Animals , Antibodies, Viral/immunology , Antibody Specificity , Antigens, Viral/biosynthesis , Antigens, Viral/genetics , Antigens, Viral/immunology , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus/genetics , Coronavirus Infections/epidemiology , Epitopes/genetics , Epitopes/immunology , Europe/epidemiology , Eutheria/virology , Gene Expression Regulation, Viral , Genetic Variation , Haplotypes/genetics , Humans , Models, Molecular , Mutation , Phylogeny , Pneumonia, Viral/epidemiology , Protein Biosynthesis , Protein Conformation , RNA, Viral/genetics , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Nucleic Acid , Viral Proteins/immunology
18.
Nat Commun ; 11(1): 886, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060290

ABSTRACT

HPV16 causes half of cervical cancers worldwide; for unknown reasons, most infections resolve within two years. Here, we analyze the viral genomes of 5,328 HPV16-positive case-control samples to investigate mutational signatures and the role of human APOBEC3-induced mutations in viral clearance and cervical carcinogenesis. We identify four de novo mutational signatures, one of which matches the COSMIC APOBEC-associated signature 2. The viral genomes of the precancer/cancer cases are less likely to contain within-host somatic HPV16 APOBEC3-induced mutations (Fisher's exact test, P = 6.2 x 10-14), and have a 30% lower nonsynonymous APOBEC3 mutation burden compared to controls. We replicate the low prevalence of HPV16 APOBEC3-induced mutations in 1,749 additional cases. APOBEC3 mutations also historically contribute to the evolution of HPV16 lineages. We demonstrate that cervical infections with a greater burden of somatic HPV16 APOBEC3-induced mutations are more likely to be benign or subsequently clear, suggesting they may reduce persistence, and thus progression, within the host.


Subject(s)
Cytidine Deaminase/metabolism , Genome, Viral , Human papillomavirus 16/genetics , Papillomavirus Infections/enzymology , APOBEC Deaminases , Adult , Case-Control Studies , Cervix Uteri/virology , Cytidine Deaminase/genetics , Female , Host-Pathogen Interactions , Human papillomavirus 16/physiology , Humans , Middle Aged , Mutation , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/enzymology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology
20.
Viruses ; 10(2)2018 02 13.
Article in English | MEDLINE | ID: mdl-29438321

ABSTRACT

Of the ~60 human papillomavirus (HPV) genotypes that infect the cervicovaginal epithelium, only 12-13 "high-risk" types are well-established as causing cervical cancer, with HPV16 accounting for over half of all cases worldwide. While HPV16 is the most important carcinogenic type, variants of HPV16 can differ in their carcinogenicity by 10-fold or more in epidemiologic studies. Strong genotype-phenotype associations embedded in the small 8-kb HPV16 genome motivate molecular studies to understand the underlying molecular mechanisms. Understanding the mechanisms of HPV genomic findings is complicated by the linkage of HPV genome variants. A panel of experts in various disciplines gathered on 21 November 2016 to discuss the interdisciplinary science of HPV oncogenesis. Here, we summarize the discussion of the complexity of the viral-host interaction and highlight important next steps for selected applied basic laboratory studies guided by epidemiological genomic findings.


Subject(s)
Cell Transformation, Viral , Genome, Viral , Genomics , Host-Pathogen Interactions , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Genomics/methods , High-Throughput Nucleotide Sequencing , Human papillomavirus 16/genetics , Humans , Papillomavirus Infections/complications , Phylogeny , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL