Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Cancer Ther ; 7(7): 1880-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18606718

ABSTRACT

Signaling through the erbB receptor family of tyrosine kinases contributes to the proliferation, differentiation, migration, and survival of a variety of cell types. Abnormalities in members of this receptor family have been shown to play a role in oncogenesis, thus making them attractive targets for anticancer treatments. PF-00299804 is a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor currently in phase I clinical trials. PF-00299804 is believed to irreversibly inhibit erbB tyrosine kinase activity through binding at the ATP site and covalent modification of nucleophilic cysteine residues in the catalytic domains of erbB family members. Oral administration of PF-00299804 causes significant antitumor activity, including marked tumor regressions in a variety of human tumor xenograft models that express and/or overexpress erbB family members or contain the double mutation (L858R/T790M) in erbB1 (EGFR) associated with resistance to gefitinib and erlotinib. Furthermore, PF-00299804 shows exceptional distribution to human tumor xenografts and excellent pharmacokinetic properties across species.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Quinazolinones/pharmacology , Quinazolinones/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, SCID , Mutation/genetics , Phosphorylation/drug effects , Species Specificity
2.
J Med Chem ; 49(4): 1475-85, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480284

ABSTRACT

Structure-activity relationships for inhibition of erbB1, erbB2, and erbB4 were determined for a series of alkynamide analogues of quinazoline- and pyrido[3,4-d]pyrimidine-based compounds. The compounds were prepared by coupling the appropriate 6-aminoquinazolines or 6-aminopyrido[3,4-d]pyrimidines with alkynoic acids, using EDCI.HCl in pyridine. The compounds showed pan-erbB enzyme inhibition but were on average about 10-fold more potent against erbB1 than against erbB2 and erbB4. For cellular inhibition, the nature of the alkylating side chains was an important determinant, with 5-dialkylamino-2-pentynamide type Michael acceptors providing the highest potency. This is suggested to be due to an improved ability of the amine to participate in an autocatalysis of the Michael reaction with enzyme cysteine residues. Pyrido[3,4-d]pyrimidine analogue 39 was selected for in vivo evaluation and achieved tumor regressions at 10 mg/kg in the A431 human epidermoid carcinoma and at 40 mg/kg for the SF767 human glioblastoma and the SKOV3 human ovarian carcinoma. Complete stasis was observed at 40 mg/kg in the BXPC3 human pancreatic carcinoma as well as in the H125 human non-small-cell lung carcinoma.


Subject(s)
Alkynes/chemical synthesis , Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Pyrimidines/chemical synthesis , Quinazolines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Alkynes/chemistry , Alkynes/pharmacology , Amides/chemistry , Amides/pharmacokinetics , Amides/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Dogs , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Haplorhini , Humans , Mice , Mice, Nude , Mice, SCID , Phosphorylation , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Rats , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-4 , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Cancer Res ; 67(24): 11924-32, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18089823

ABSTRACT

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors gefitinib and erlotinib are effective treatments for a subset of non-small cell lung cancers. In particular, cancers with specific EGFR-activating mutations seem to be the most sensitive to these agents. However, despite their initial response, such cancers almost invariably develop resistance. In 50% of such cancers, a secondary EGFR mutation, T790M, has been identified that renders gefitinib and erlotinib ineffective inhibitors of EGFR kinase activity. Thus, there is a clinical need to develop novel EGFR inhibitors that can effectively inactivate T790M-containing EGFR proteins. In this study, we evaluate the effectiveness of a novel compound, PF00299804, an irreversible pan-ERBB inhibitor. The results from these studies show that PF00299804 is a potent inhibitor of EGFR-activating mutations as well as the EGFR T790M resistance mutation both in vitro and in vivo. Additionally, PF00299804 is a highly effective inhibitor of both the wild-type ERBB2 and the gefitinib-resistant oncogenic ERBB2 mutation identified in lung cancers. These preclinical evaluations support further clinical development of PF00299804 for cancers with mutations and/or amplifications of ERBB family members.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Antineoplastic Agents/therapeutic use , ErbB Receptors/genetics , Oncogene Proteins v-erbB/antagonists & inhibitors , Quinazolines/pharmacology , Quinazolinones/therapeutic use , Adaptor Proteins, Signal Transducing/drug effects , Animals , Cell Division , Cell Line, Tumor , Cloning, Molecular , ErbB Receptors/drug effects , Gefitinib , Humans , Lung Neoplasms , Mice , Mice, Nude
4.
New York, NY; Springer New York; 2009.
Monography in English | Bibliography | ID: bib-333169

ABSTRACT

The past century has seen the relationshipbetween psychology and religion progress from wary antagonists tostrange bedfellows to complementary worldviews. Psychology,Religion, and Spirituality is designed as a text that reflects thishistory while illuminating the robust dialogue that continues toaccompany it. The elegant, accessible coverage ranges from earlypsychological critiques of religion and responses from majorreligious thinkers to positivist and constructivist philosophies;from Jung's archetypes to neurobiological research into thereligious brain; from scientific constructs of prayer, meditation,and mindfulness to collaborative interventions for mental health.The book's distinctive teaching/learning presentation: Discussesnon-Western religious traditions in addition to Christianity.Balances theoretical literature with empirical research on eachtopic. Reviews contemporary research and debates in psychology andreligion. Examines developmental approaches to religious andspiritual growth. Provides a variety of practical applications.Includes review questions, exercises, and other student materials.Encourages readers to develop their own ideas on this subject Theseare valuable perspectives for graduate or undergraduate courses inthe psychology of religion, and a rich resource for graduatecourses in psychology and counseling. In addition, Psychology,Religion, and Spirituality makes an inviting text for seminarycourses in spiritual and pastoral counseling.

SELECTION OF CITATIONS
SEARCH DETAIL