Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Jpn J Infect Dis ; 77(3): 144-154, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38296537

ABSTRACT

This cross-sectional study investigated the antimicrobial resistance (AMR) patterns of gram-negative pathogens isolated from 4,789 hospitalized patients with lower respiratory tract infections (LRTIs). Of the collected specimens, 1,325 (27.7%) tested positive for gram-negative bacteria. Acinetobacter baumannii (38.6%), Pseudomonas aeruginosa (33.5%), Klebsiella pneumoniae (18.7%), Escherichia coli (5.6%), and Klebsiella aerogenes (3.5%) were the most prevalent isolates. AMR analysis revealed high resistance rates (79.9%-100%) of A. baumannii isolates to multiple classes of antibiotics except amikacin, trimethoprim/sulfamethoxazole, and colistin. P. aeruginosa displayed low resistance to colistin (< 10%) but high resistance to other antibiotics. K. pneumoniae displayed high resistance rates of 90.0%-100.0% to most penicillins, whereas resistance rates were notably lower for colistin (7.1%) and amikacin (16.7%). K. aerogenes exhibited high resistance to various antibiotics and sensitivity to amikacin (95.1%), ampicillin (100.0%), and colistin (100.0%). E. coli isolates exhibited resistance to ampicillin (96.9%) and maximum sensitivity to several antibiotics. Our study identified significant AMR trends and highlighted the prevalence of multidrug-resistant strains (93.6% for K. aerogenes and 69.1%-92.4% for other isolates). These findings emphasize the urgent need for appropriate antibiotic management practices to combat AMR in gram-negative pathogens associated with LRTIs.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Hospitals, Teaching , Microbial Sensitivity Tests , Respiratory Tract Infections , Humans , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Middle Aged , Vietnam/epidemiology , Cross-Sectional Studies , Adult , Male , Female , Aged , Young Adult , Adolescent , Child , Aged, 80 and over , Child, Preschool , Infant
2.
Infect Drug Resist ; 17: 3463-3473, 2024.
Article in English | MEDLINE | ID: mdl-39139624

ABSTRACT

Purpose: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. Methods: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. Results: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). Conclusion: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use.

3.
Infect Drug Resist ; 16: 1677-1692, 2023.
Article in English | MEDLINE | ID: mdl-36992965

ABSTRACT

Purpose: Studies on the epidemiology of bloodstream infection (BSI) and antimicrobial resistance (AMR) are limited in Vietnam. Thus, the present study aimed to elucidate the epidemiology of BSI and AMR of BSI-causing bacteria in Vietnam. Methods: Data regarding blood cultures from 2014 to 2021 were collected and analyzed using the chi-square test, Cochran-Armitage test, and binomial logistic regression model. Results: Overall, 2405 (14.15%) blood cultures were positive during the study period. In total, 55.76% of BSIs occurred in patients aged ≥60 years. The male-to-female ratio of patients with BSI was 1.87:1. Escherichia coli (26.11%), Staphylococcus aureus (15.79%), Klebsiella pneumoniae (10.44%), Acinetobacter baumannii (4.70%), and Pseudomonas aeruginosa (3.45%) were the leading bacterial species causing BSI. The AMR rate of these bacteria isolated in the intensive care unit (ICU) was significantly higher compared with that of those in other wards. E. coli was the least resistant to carbapenems (2.39%-4.14%), amikacin (3.85%), and colistin (11.54%) and most resistant to penicillins (>80.0%). S. aureus was the least resistant to glycopeptides (0%-3.38%), quinupristin-dalfopristin (0.59%), and linezolid (1.02%) and most resistant to clindamycin (71.57%). K. pneumoniae was the least resistant to ertapenem (8.86%), amikacin (9.39%), and colistin (15.38%) and most resistant to aztreonam (83.33%). A. baumannii was the least resistant to amikacin (16.67%) and colistin (16.67%) and highly resistant to other antibiotics (≥50.0%). P. aeruginosa was the least resistant to colistin (16.33%) and piperacillin (28.17%) and highly resistant to other antibiotics (≥50.0%). Notably, the multidrug resistance rate of E. coli (76.41%) was the highest among common pathogens, followed by A. baumannii (71.57%), P. aeruginosa (64.56%), S. aureus (56.99%), and K. pneumoniae (43.72%). Conclusion: The AMR rate of BSI-causing bacteria, particularly strains isolated from ICU, was alarmingly high. There is a need for new antibiotics, therapeutic strategies, as well as prevention and control to combat BSI and AMR.

4.
J Dermatol Sci ; 95(1): 36-43, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31262443

ABSTRACT

BACKGROUND: Local type III hypersensitivity reactions are acute inflammatory events induced by immune complex (IC) deposition. CD22 and CD72 are B cell-specific cell surface molecules that negatively regulate B cell function. OBJECTIVE: To elucidate the roles of CD22 and CD72 in the development of IgG-mediated type III hypersensitivity reactions. METHOD: The reverse Arthus reaction model in the skin was induced in mice lacking CD22 (CD22-/-), CD72 (CD72-/-), and both of them (CD22-/-/CD72-/-). Edema at 4h and hemorrhage at 8h after IC challenge were evaluated. Inflammatory cell infiltration and cytokine and chemokine expression were also examined. RESULTS: Edema and hemorrhage were significantly reduced in CD22-/-/CD72-/- mice compared with wild-type mice. The loss of both membrane proteins resulted in a greater decrease in edema at 4h, but not hemorrhage at 8h, than the loss of each protein alone. Infiltration of neutrophils, macrophages, and T cells, and the expression of TNF-α, IL-6, MIP-1α, and CCR5 mRNA were also diminished in the knockout mice compared to wild-type mice, and most significantly reduced in CD22-/-/CD72-/- mice. Regulatory T (Treg) cells in the spleen were significantly increased in all knockout mice at 4h. Significant differences in the severity of edema and hemorrhage between wild-type and knockout mice were lost when Treg cells were depleted in the knockout mice. CONCLUSION: These results demonstrate that CD22 and CD72 expression contribute to the development of the reverse Arthus reaction model and CD22 and CD72 might be therapeutic targets for human IC-mediated diseases.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , Arthus Reaction/immunology , Sialic Acid Binding Ig-like Lectin 2/immunology , Skin/immunology , Animals , Antigen-Antibody Complex/administration & dosage , Antigen-Antibody Complex/immunology , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , Arthus Reaction/pathology , Biopsy , Injections, Intradermal , Mice , Mice, Knockout , Sialic Acid Binding Ig-like Lectin 2/genetics , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL