Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS Genet ; 19(11): e1011055, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38011256

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression by base-pairing to target sequences in messenger RNAs (mRNAs) and recruiting factors that induce translational repression and mRNA decay. In animals, nucleotides 2-8 at the 5' end of the miRNA, called the seed region, are often necessary and sometimes sufficient for functional target interactions. MiRNAs that contain identical seed sequences are grouped into families where individual members have the potential to share targets and act redundantly. A rare exception seemed to be the miR-238/239ab family in Caenorhabditis elegans, as previous work indicated that loss of miR-238 reduced lifespan while deletion of the miR-239ab locus resulted in enhanced longevity and thermal stress resistance. Here, we re-examined these potentially opposing roles using new strains that individually disrupt each miRNA sister. We confirmed that loss of miR-238 is associated with a shortened lifespan but could detect no longevity or stress phenotypes in animals lacking miR-239a or miR-239b, individually or in combination. Additionally, dozens of genes were mis-regulated in miR-238 mutants but almost no gene expression changes were detected in either miR-239a or miR-239b mutants compared to wild type animals. We present evidence that the lack of redundancy between miR-238 and miR-239ab is independent of their sequence differences; miR-239a or miR-239b could substitute for the longevity role of miR-238 when expressed from the miR-238 locus. Altogether, these studies disqualify miR-239ab as negative regulators of aging and demonstrate that expression, not sequence, dictates the specific role of miR-238 in promoting longevity.


Subject(s)
Caenorhabditis elegans Proteins , MicroRNAs , Animals , Humans , Aging , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics
2.
PLoS Genet ; 14(6): e1007379, 2018 06.
Article in English | MEDLINE | ID: mdl-29927939

ABSTRACT

Argonaute (AGO) proteins partner with microRNAs (miRNAs) to target specific genes for post-transcriptional regulation. During larval development in Caenorhabditis elegans, Argonaute-Like Gene 1 (ALG-1) is the primary mediator of the miRNA pathway, while the related ALG-2 protein is largely dispensable. Here we show that in adult C. elegans these AGOs are differentially expressed and, surprisingly, work in opposition to each other; alg-1 promotes longevity, whereas alg-2 restricts lifespan. Transcriptional profiling of adult animals revealed that distinct miRNAs and largely non-overlapping sets of protein-coding genes are misregulated in alg-1 and alg-2 mutants. Interestingly, many of the differentially expressed genes are downstream targets of the Insulin/ IGF-1 Signaling (IIS) pathway, which controls lifespan by regulating the activity of the DAF-16/ FOXO transcription factor. Consistent with this observation, we show that daf-16 is required for the extended lifespan of alg-2 mutants. Furthermore, the long lifespan of daf-2 insulin receptor mutants, which depends on daf-16, is strongly reduced in animals lacking alg-1 activity. This work establishes an important role for AGO-mediated gene regulation in aging C. elegans and illustrates that the activity of homologous genes can switch from complementary to antagonistic, depending on the life stage.


Subject(s)
Argonaute Proteins/physiology , Caenorhabditis elegans/physiology , Gene Expression Regulation, Developmental , Longevity/genetics , MicroRNAs/physiology , RNA, Helminth/physiology , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Forkhead Transcription Factors/physiology , Genes, Helminth , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Mutation , RNA-Binding Proteins/physiology , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction/physiology
3.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948813

ABSTRACT

Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing and Nanopore direct RNA sequencing over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity and a rise in inosine and pseudouridine editing events in transcripts from older animals. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.

SELECTION OF CITATIONS
SEARCH DETAIL