Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Blood ; 143(23): 2386-2400, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38446698

ABSTRACT

ABSTRACT: Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in preclinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, JAK2 inhibitor fedratinib, and JAK1/2 inhibitor ruxolitinib. All 3 drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFN-γ)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, in which perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib, and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, whereas fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent proinflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.


Subject(s)
Disease Models, Animal , Lymphohistiocytosis, Hemophagocytic , Nitriles , Pyrazoles , Pyrimidines , Animals , Pyrimidines/pharmacology , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/chemically induced , Lymphohistiocytosis, Hemophagocytic/pathology , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Mice , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , Pyrroles/pharmacology , Pyrroles/therapeutic use , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice, Inbred C57BL , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Piperidines/pharmacology , Humans , Benzenesulfonamides , Bridged-Ring Compounds , Pyrrolidines
2.
Blood ; 143(22): 2270-2283, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38446568

ABSTRACT

ABSTRACT: Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.


Subject(s)
Cell Cycle Proteins , Genetic Predisposition to Disease , Germ-Line Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Blood ; 143(10): 872-881, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37992218

ABSTRACT

ABSTRACT: Primary hemophagocytic lymphohistiocytosis (pHLH) is a life-threatening hyperinflammatory syndrome that develops mainly in patients with genetic disorders of lymphocyte cytotoxicity and X-linked lymphoproliferative syndromes. Previous studies with etoposide-based treatment followed by hematopoetic stem cell transplantation (HSCT) resulted in 5-year survival of 50% to 59%. Contemporary data are lacking. We evaluated 88 patients with pHLH documented in the international HLH registry from 2016-2021. In 12 of 88 patients, diagnosis was made without HLH activity, based on siblings or albinism. Major HLH-directed drugs (etoposide, antithymocyte globulin, alemtuzumab, emapalumab, ruxolitinib) were administered to 66 of 76 patients who were symptomatic (86% first-line etoposide); 16 of 57 patients treated with etoposide and 3 of 9 with other first-line treatment received salvage therapy. HSCT was performed in 75 patients; 7 patients died before HSCT. Three-year probability of survival (pSU) was 82% (confidence interval [CI], 72%-88%) for the entire cohort and 77% (CI, 64%-86%) for patients receiving first-line etoposide. Compared with the HLH-2004 study, both pre-HSCT and post-HSCT survival of patients receiving first-line etoposide improved, 83% to 91% and 70% to 88%. Differences to HLH-2004 included preferential use of reduced-toxicity conditioning and reduced time from diagnosis to HSCT (from 148 to 88 days). Three-year pSU was lower with haploidentical (4 of 9 patients [44%]) than with other donors (62 of 66 [94%]; P < .001). Importantly, early HSCT for patients who were asymptomatic resulted in 100% survival, emphasizing the potential benefit of newborn screening. This contemporary standard-of-care study of patients with pHLH reveals that first-line etoposide-based therapy is better than previously reported, providing a benchmark for novel treatment regimes.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Lymphoproliferative Disorders , Infant, Newborn , Humans , Etoposide/therapeutic use , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/diagnosis , Treatment Outcome , Hematopoietic Stem Cell Transplantation/methods , Lymphoproliferative Disorders/etiology
4.
Blood ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991192

ABSTRACT

The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy.

5.
Bioessays ; : e2400033, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058907

ABSTRACT

B-cell Acute Lymphoblastic Leukemia (B-ALL) is the most common pediatric cancer, arising most often in children aged 2-5 years. This distinctive age distribution hints at an association between B-ALL development and disrupted immune system function during a susceptible period during childhood, possibly triggered by early exposure to infection. While cure rates for childhood B-ALL surpass 90% in high-income nations, survivors suffer from diminished quality of life due to the side effects of treatment. Consequently, understanding the origins and evolution of B-ALL, and how to prevent this prevalent childhood cancer, is paramount to alleviate this substantial health burden. This article provides an overview of our current understanding of the etiology of childhood B-ALL and explores how this knowledge can inform preventive strategies.

6.
Blood ; 141(26): 3143-3152, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37023453

ABSTRACT

Because germ line genetic testing is increasingly integrated into the clinical care of patients with hematologic malignancies, it is important for hematologists to effectively communicate with patients and their families about the genetic testing process and to relay the results in a concise and understandable manner. Effective communication facilitates trust between patients and providers and allows patients to feel empowered to ask questions and actively participate in their health care. Especially for inherited conditions, the patient's understanding of germ line genetic information is critical because it enables them to share this information with relatives who are at risk, thereby promoting cascade testing and providing potentially life-saving information to family members who may be similarly affected. Accordingly, a hematologist's skills in understanding the importance and implications of germ line genetic information and the ability to convey this information in patient-friendly language is a critical first step and can have a far-reaching impact. In this article, we outline a straightforward approach to discussing genetic information and provide the reader with practical tips that can be used when consenting patients to germ line genetic testing and disclosing subsequent test results. We also review special considerations and ethical concerns arising when offering genetic evaluation and germ line testing to patients and related donors for allogeneic hematopoietic stem cell transplantation.


Subject(s)
Genetic Testing , Hematologic Neoplasms , Humans , Family , Palliative Care , Germ Cells
7.
Blood ; 141(11): 1293-1307, 2023 03 16.
Article in English | MEDLINE | ID: mdl-35977101

ABSTRACT

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Subject(s)
Hodgkin Disease , Humans , Young Adult , Adult , Hodgkin Disease/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Codon, Nonsense , Whole Genome Sequencing , Pedigree , Cell Cycle Proteins/genetics
8.
Article in English | MEDLINE | ID: mdl-39147326

ABSTRACT

BACKGROUND: Agammaglobulinemia due to variants in IGLL1 has traditionally been considered an exceedingly rare form of severe B-cell deficiency, with only eight documented cases in the literature. Surprisingly, the first agammaglobulinemic patient identified by newborn screening (NBS) through quantification of kappa-deleting recombination excision circles harbored variants in IGLL1. OBJECTIVE: To provide a comprehensive overview of the clinical and immunological findings of patients with B-cell deficiency attributed to variants in IGLL1. METHODS: NBS programs reporting using kappa-deleting recombination excision circle assays, the European Society for Immunodeficiencies Registry, and authors of published reports featuring patients with B-cell deficiency linked to IGLL1 variants were contacted. Only patients with (likely) pathogenic variants, reduced CD19+ counts and no alternative diagnosis were included. RESULTS: The study included 13 patients identified through NBS, two clinically diagnosed patients, and two asymptomatic siblings. All had severely reduced CD19+ B-cells (< 0.1×109/L) on first evaluation, yet subsequent follow-ups indicated residual immunoglobulin production. Specific antibody responses to vaccine antigens varied, with a predominant reduction observed during infancy. Clinical outcomes were favorable with immunoglobulin G substitution. Two patients successfully discontinued substitution without developing susceptibility to infections and maintaining immunoglobulin levels. The pooled incidence of homozygous or compound heterozygous pathogenic IGLL1 variants identified by NBS in Austria, Czechia, and Switzerland was 1.3:100´000, almost double of X-linked agammaglobulinemia. CONCLUSION: B-cell deficiency resulting from IGLL1 variants appears to be more prevalent than initially believed. Despite markedly low B-cell counts, the clinical course in some patients may be milder than reported in the literature so far.

9.
Genes Chromosomes Cancer ; 63(1): e23195, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37548271

ABSTRACT

Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.


Subject(s)
Brain Neoplasms , Chromosome Disorders , Rhabdoid Tumor , Teratoma , Child , Female , Male , Humans , Young Adult , Adult , Infant , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , Brain Neoplasms/genetics , Germ-Line Mutation , Translocation, Genetic , Teratoma/genetics , Teratoma/pathology
10.
Pediatr Blood Cancer ; : e31208, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034595

ABSTRACT

BACKGROUND: Survival data for recurrent pediatric atypical teratoid rhabdoid tumor (ATRT) and its association to molecular groups are extremely limited. METHODS: Single-institution retrospective study of 64 children less than 21 years old with recurrent or treatment-refractory (progressive disease [PD]) ATRT treated at St. Jude Hospital from January 2000 to December 2020. Demographic, clinicopathologic, treatment, molecular grouping (SHH, TYR, and MYC) and germline data were collected. Progression-free survival (PFS2: time from PD to subsequent first progression) and overall survival (OSpostPD: time from PD to death/last follow-up) were estimated by Kaplan-Meier analysis. RESULTS: Median age at and time from initial diagnosis to PD were 2.1 years (range: 0.5-17.9 years) and 5.4 months (range: 0.5-125.6 months), respectively. Only five of 64 children (7.8%) are alive at median follow-up of 10.9 (range: 4.2-18.1) years from PD. The 2/5-year PFS2 and OSpostPD were 3.1% (±1.8%)/1.6% (±1.1%) and 20.3% (±4.8%)/7.3% (±3.5%), respectively. Children with TYR group (n = 10) had a better OSpostPD compared to those with MYC (n = 11) (2-year survival estimates: 60.0% ± 14.3% vs. 18.2% ± 9.5%; p = .019), or those with SHH (n = 21; 4.8% ± 3.3%; p = .014). In univariate analyses, OSpostPD was better with older age at diagnosis (p = .037), female gender (p = .008), and metastatic site of PD compared to local or combined sites of PD (p < .001). Two-year OSpostPD for patients receiving any salvage therapy (n = 39) post PD was 33.3% ± 7.3%. CONCLUSIONS: Children with recurrent/refractory ATRT have dismal outcomes. Older age at diagnosis, female gender, TYR group, and metastatic site of PD were associated with relatively longer survival in our study.

11.
J Med Genet ; 60(10): 987-992, 2023 10.
Article in English | MEDLINE | ID: mdl-36813544

ABSTRACT

Heterozygous germline pathogenic variants (GPVs) in SMARCA4, the gene encoding the ATP-dependent chromatin remodelling protein SMARCA4 (previously known as BRG1), predispose to several rare tumour types, including small cell carcinoma of the ovary, hypercalcaemic type, atypical teratoid and malignant rhabdoid tumour, and uterine sarcoma. The increase in germline testing of SMARCA4 in recent years has revealed putative GPVs affecting SMARCA4 in patients with other cancer types. Here we describe 11 patients with neuroblastoma (NBL), including 4 previously unreported cases, all of whom were found to harbour heterozygous germline variants in SMARCA4 Median age at diagnosis was 5 years (range 2 months-26 years); nine were male; and eight of nine cases had tumour location information in the adrenal gland. Eight of the germline variants were expected to result in loss of function of SMARCA4 (large deletion, truncating and canonical splice variants), while the remaining four were missense variants. Loss of heterozygosity of the wild-type SMARCA4 allele was found in all eight cases where somatic testing was performed, supporting the notion that SMARCA4 functions as a classic tumour suppressor. Altogether, these findings strongly suggest that NBL should be included in the spectrum of SMARCA4-associated tumours.


Subject(s)
Carcinoma, Small Cell , Neuroblastoma , Female , Humans , Infant , Male , Biomarkers, Tumor/genetics , Carcinoma, Small Cell/diagnosis , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/pathology , DNA Helicases/genetics , Germ-Line Mutation/genetics , Neuroblastoma/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Child, Preschool , Child , Adolescent , Young Adult , Adult
12.
Adv Exp Med Biol ; 1448: 227-248, 2024.
Article in English | MEDLINE | ID: mdl-39117818

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous and predominantly B cell tropic virus. One of the most common viruses to infect humans, EBV, is best known as the causative agent of infectious mononucleosis (IM). Although most people experience asymptomatic infection, EBV is a potent immune stimulus and as such it elicits robust proliferation and activation of the B-lymphocytes it infects as well as the immune cells that respond to infection. In certain individuals, such as those with inherited or acquired defects affecting the immune system, failure to properly control EBV leads to the accumulation of EBV-infected B cells and EBV-reactive immune cells, which together contribute to the development of often life-threatening cytokine storm syndromes (CSS). Here, we review the normal immune response to EBV and discuss several CSS associated with EBV, such as chronic active EBV infection, hemophagocytic lymphohistiocytosis, and post-transplant lymphoproliferative disorder. Given the critical role for cytokines in driving inflammation and contributing to disease pathogenesis, we also discuss how targeting specific cytokines provides a rational and potentially less toxic treatment for EBV-driven CSS.


Subject(s)
Cytokine Release Syndrome , Cytokines , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Cytokines/immunology , Cytokines/metabolism , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/virology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/virology , Animals
13.
Adv Exp Med Biol ; 1448: 583-600, 2024.
Article in English | MEDLINE | ID: mdl-39117841

ABSTRACT

Cytokine storm syndromes (CSSs) comprise a group of severe and often fatal hyperinflammatory conditions driven by the overproduction of pro-inflammatory cytokines by activated cells of the immune system. Many of the CSS-associated cytokines mediate their downstream effects by signaling through the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs). In addition, several of these cytokines are produced downstream of JAK/STAT pathway activation. Therefore, targeting JAK/STAT signaling using small molecule JAK inhibitors has become an increasingly appealing therapeutic option to dampen hyperinflammation in patients with CSSs. Application of JAK inhibitors in preclinical CSS models has shown improvements in multiple sequelae of hyperinflammation, and there is growing clinical evidence supporting the efficacy of JAK inhibition in patients with these conditions. Although generally well tolerated, JAK inhibitor use is not without potential for toxicity, especially in settings like CSSs where end-organ dysfunction is common. More prospective clinical trials incorporating JAK inhibitors, alone or in combination with other immunomodulatory therapies, are necessary to determine the optimal dosing, schedule, efficacy, and tolerability of these agents for patients experiencing CSSs.


Subject(s)
Cytokine Release Syndrome , Janus Kinase Inhibitors , Janus Kinases , Humans , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/adverse effects , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Signal Transduction/drug effects , Cytokines/metabolism , Animals , STAT Transcription Factors/metabolism , STAT Transcription Factors/antagonists & inhibitors
14.
Lancet Oncol ; 24(10): 1147-1156, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37797633

ABSTRACT

BACKGROUND: Carriers of cancer predisposing variants are at an increased risk of developing subsequent malignant neoplasms among those who have survived childhood cancer. We aimed to investigate whether cancer predisposing variants contribute to the risk of subsequent malignant neoplasm-related late mortality (5 years or more after diagnosis). METHODS: In this analysis, data were included from two retrospective cohort studies, St Jude Lifetime Cohort (SJLIFE) and the Childhood Cancer Survivor Study (CCSS), with prospective follow-up of patients who were alive for at least 5 years after diagnosis with childhood cancer (ie, long-term childhood cancer survivors) with corresponding germline whole genome or whole exome sequencing data. Cancer predisposing variants affecting 60 genes associated with well-established autosomal-dominant cancer-predisposition syndromes were characterised. Subsequent malignant neoplasms were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 4.03 with modifications. Cause-specific late mortality was based on linkage with the US National Death Index and systematic cohort follow up. Fine-Gray subdistribution hazard models were used to estimate subsequent malignant neoplasm-related late mortality starting from the first biospecimen collection, treating non-subsequent malignant neoplasm-related deaths as a competing risk, adjusting for genetic ancestry, sex, age at diagnosis, and cancer treatment exposures. SJLIFE (NCT00760656) and CCSS (NCT01120353) are registered with ClinicalTrials.gov. FINDINGS: 12 469 (6172 male and 6297 female) participants were included, 4402 from the SJLIFE cohort (median follow-up time since collection of the first biospecimen 7·4 years [IQR 3·1-9·4]) and 8067 from the CCSS cohort (median follow-up time since collection of the first biospecimen 12·6 years [2·2-16·6]). 641 (5·1%) of 12 469 participants carried cancer predisposing variants (294 [6·7%] in the SJLIFE cohort and 347 [4·3%] in the CCSS cohort), which were significantly associated with an increased severity of subsequent malignant neoplasms (CTCAE grade ≥4 vs grade <4: odds ratio 2·15, 95% CI 1·18-4·19, p=0·0085). 263 (2·1%) subsequent malignant neoplasm-related deaths (44 [1·0%] in the SJLIFE cohort; and 219 [2·7%] in the CCSS cohort) and 426 (3·4%) other-cause deaths (103 [2·3%] in SJLIFE; and 323 [4·0%] in CCSS) occurred. Cumulative subsequent malignant neoplasm-related mortality at 10 years after the first biospecimen collection in carriers of cancer predisposing variants was 3·7% (95% CI 1·2-8·5) in SJLIFE and 6·9% (4·1-10·7) in CCSS versus 1·5% (1·0-2·1) in SJLIFE and 2·1% (1·7-2·5) in CCSS in non-carriers. Carrying a cancer predisposing variant was associated with an increased risk of subsequent malignant neoplasm-related mortality (SJLIFE: subdistribution hazard ratio 3·40 [95% CI 1·37-8·43]; p=0·0082; CCSS: 3·58 [2·27-5·63]; p<0·0001). INTERPRETATION: Identifying participants at increased risk of subsequent malignant neoplasms via genetic counselling and clinical genetic testing for cancer predisposing variants and implementing early personalised cancer surveillance and prevention strategies might reduce the substantial subsequent malignant neoplasm-related mortality burden. FUNDING: American Lebanese Syrian Associated Charities and US National Institutes of Health.


Subject(s)
Cancer Survivors , Neoplasms , Child , Humans , Male , Female , Neoplasms/pathology , Retrospective Studies , Follow-Up Studies , Prospective Studies , Risk Factors
15.
Genome Res ; 30(8): 1170-1180, 2020 08.
Article in English | MEDLINE | ID: mdl-32817165

ABSTRACT

De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20-35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Li-Fraumeni Syndrome/genetics , Ovarian Neoplasms/genetics , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Family , Female , Humans , Pedigree , Tumor Suppressor Protein p53/genetics , Young Adult
16.
Radiology ; 307(5): e222264, 2023 06.
Article in English | MEDLINE | ID: mdl-37191489

ABSTRACT

Background MYCN-amplified RB1 wild-type (MYCNARB1+/+) retinoblastoma is a rare but clinically important subtype of retinoblastoma due to its aggressive character and relative resistance to typical therapeutic approaches. Because biopsy is not indicated in retinoblastoma, specific MRI features might be valuable to identify children with this genetic subtype. Purpose To define the MRI phenotype of MYCNARB1+/+ retinoblastoma and evaluate the ability of qualitative MRI features to help identify this specific genetic subtype. Materials and Methods In this retrospective, multicenter, case-control study, MRI scans in children with MYCNARB1+/+ retinoblastoma and age-matched children with RB1-/- subtype retinoblastoma were included (case-control ratio, 1:4; scans acquired from June 2001 to February 2021; scans collected from May 2018 to October 2021). Patients with histopathologically confirmed unilateral retinoblastoma, genetic testing (RB1/MYCN status), and MRI scans were included. Associations between radiologist-scored imaging features and diagnosis were assessed with the Fisher exact test or Fisher-Freeman-Halton test, and Bonferroni-corrected P values were calculated. Results A total of 110 patients from 10 retinoblastoma referral centers were included: 22 children with MYCNARB1+/+ retinoblastoma and 88 control children with RB1-/- retinoblastoma. Children in the MYCNARB1+/+ group had a median age of 7.0 months (IQR, 5.0-9.0 months) (13 boys), while children in the RB1-/- group had a median age of 9.0 months (IQR, 4.6-13.4 months) (46 boys). MYCNARB1+/+ retinoblastomas were typically peripherally located (in 10 of 17 children; specificity, 97%; P < .001) and exhibited plaque or pleomorphic shape (in 20 of 22 children; specificity, 51%; P = .011) with irregular margins (in 16 of 22 children; specificity, 70%; P = .008) and extensive retina folding with vitreous enclosure (specificity, 94%; P < .001). MYCNARB1+/+ retinoblastomas showed peritumoral hemorrhage (in 17 of 21 children; specificity, 88%; P < .001), subretinal hemorrhage with a fluid-fluid level (in eight of 22 children; specificity, 95%; P = .005), and strong anterior chamber enhancement (in 13 of 21 children; specificity, 80%; P = .008). Conclusion MYCNARB1+/+ retinoblastomas show distinct MRI features that could enable early identification of these tumors. This may improve patient selection for tailored treatment in the future. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Rollins in this issue.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/diagnostic imaging , Retinoblastoma/genetics , N-Myc Proto-Oncogene Protein/genetics , Retrospective Studies , Case-Control Studies , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , Retinoblastoma Binding Proteins/genetics
17.
Ann Rheum Dis ; 82(10): 1271-1285, 2023 10.
Article in English | MEDLINE | ID: mdl-37487610

ABSTRACT

OBJECTIVE: Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS: A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS: The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION: These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Rheumatology , Child , Adult , Humans , United States , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/therapy , Consensus
18.
J Pediatr ; 261: 113538, 2023 10.
Article in English | MEDLINE | ID: mdl-37279817

ABSTRACT

We characterized germline genetic test result understanding in adolescents and young adults (AYAs) (n = 21) with cancer 1-3.9 years post-disclosure using semistructured qualitative interviews. Most AYAs articulated their cancer risk; however, 5 did not remember results and a subset demonstrated misperceptions regarding risk or confusion regarding their medical care. These findings highlight variability in AYA understanding warranting further inquiry.


Subject(s)
Neoplasms , Humans , Child , Adolescent , Young Adult , Neoplasms/diagnosis , Neoplasms/genetics , Disease Susceptibility , Genetic Testing , Genotype , Qualitative Research
19.
Blood ; 137(3): 364-373, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32693409

ABSTRACT

There is growing evidence supporting an inherited basis for susceptibility to acute lymphoblastic leukemia (ALL) in children. In particular, we and others reported recurrent germline ETV6 variants linked to ALL risk, which collectively represent a novel leukemia predisposition syndrome. To understand the influence of ETV6 variation on ALL pathogenesis, we comprehensively characterized a cohort of 32 childhood leukemia cases arising from this rare syndrome. Of 34 nonsynonymous germline ETV6 variants in ALL, we identified 22 variants with impaired transcription repressor activity, loss of DNA binding, and altered nuclear localization. Missense variants retained dimerization with wild-type ETV6 with potentially dominant-negative effects. Whole-transcriptome and whole-genome sequencing of this cohort of leukemia cases revealed a profound influence of germline ETV6 variants on leukemia transcriptional landscape, with distinct ALL subsets invoking unique patterns of somatic cooperating mutations. 70% of ALL cases with damaging germline ETV6 variants exhibited hyperdiploid karyotype with characteristic recurrent mutations in NRAS, KRAS, and PTPN11. In contrast, the remaining 30% cases had a diploid leukemia genome and an exceedingly high frequency of somatic copy-number loss of PAX5 and ETV6, with a gene expression pattern that strikingly mirrored that of ALL with somatic ETV6-RUNX1 fusion. Two ETV6 germline variants gave rise to both acute myeloid leukemia and ALL, with lineage-specific genetic lesions in the leukemia genomes. ETV6 variants compromise its tumor suppressor activity in vitro with specific molecular targets identified by assay for transposase-accessible chromatin sequencing profiling. ETV6-mediated ALL predisposition exemplifies the intricate interactions between inherited and acquired genomic variations in leukemia pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Child , Genes, Dominant , Genome, Human , Germ-Line Mutation/genetics , Humans , ETS Translocation Variant 6 Protein
20.
Pediatr Blood Cancer ; 70(7): e30361, 2023 07.
Article in English | MEDLINE | ID: mdl-37073685

ABSTRACT

In this retrospective study, we examined the prevalence and spectrum of germline variants in selected cancer predisposition genes in 38 children and young adults with melanocytic lesions at St. Jude Children's Research Hospital. Diagnoses included malignant melanoma (n = 16; 42%), spitzoid melanoma (n = 16; 42%), uveal melanoma (n = 5; 13%), and malignant melanoma arising in a giant congenital melanocytic nevus (n = 1; 3%). Six patients (15.8%) harbored pathogenic germline variants: one with bi-allelic PMS2 variants, one with a heterozygous 17q21.31 deletion, and one each with a pathogenic variant in TP53, BRIP1, ATM, or AXIN2. Overall, 15.8% of patients harbored a cancer-predisposing genetic variant.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Child , Young Adult , Retrospective Studies , Melanoma/pathology , Skin Neoplasms/pathology , Germ-Line Mutation , Genomics , Genetic Predisposition to Disease , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL