Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30413362

ABSTRACT

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Subject(s)
Graft Survival/immunology , Immunosuppression Therapy , Inflammation/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organ Transplantation , Allografts , Animals , Biomarkers , HMGB1 Protein/genetics , Immune Tolerance , Immunity, Innate , Immunologic Memory , Macrophages/immunology , Macrophages/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism , Vimentin/genetics
2.
Nature ; 569(7755): 236-240, 2019 05.
Article in English | MEDLINE | ID: mdl-31043745

ABSTRACT

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Subject(s)
Atherosclerosis/pathology , Cell Death , Cell Membrane/metabolism , Histones/metabolism , Inflammation/metabolism , Inflammation/pathology , Porosity , Animals , Arteries/pathology , Cell Membrane/drug effects , Disease Models, Animal , Female , Histones/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/pathology , Neutrophils/cytology , Protein Binding/drug effects
3.
Curr Opin Hematol ; 31(5): 230-237, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39087372

ABSTRACT

PURPOSE OF REVIEW: Thromboembolic complications are a major contributor to global mortality. The relationship between inflammation and coagulation pathways has become an emerging research topic where the role of the innate immune response, and specifically neutrophils in "immunothrombosis" are receiving much attention. This review aims to dissect the intricate interplay between histones (from neutrophils or cellular damage) and the haemostatic pathway, and to explore mechanisms that may counteract the potentially procoagulant effects of those histones that have escaped their nuclear localization. RECENT FINDINGS: Extracellular histones exert procoagulant effects via endothelial damage, platelet activation, and direct interaction with coagulation proteins. Neutralization of histone activities can be achieved by complexation with physiological molecules, through pharmacological compounds, or via proteolytic degradation. Details of neutralization of extracellular histones are still being studied. SUMMARY: Leveraging the understanding of extracellular histone neutralization will pave the way for development of novel pharmacological interventions to treat and prevent complications, including thromboembolism, in patients in whom extracellular histones contribute to their overall clinical status.


Subject(s)
Histones , Humans , Histones/metabolism , Neutrophils/metabolism , Blood Coagulation , Animals , Platelet Activation , Thrombosis/metabolism , Thromboembolism/etiology , Thromboembolism/metabolism , Extracellular Space/metabolism
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338654

ABSTRACT

Extracellular histones have been shown to act as DAMPs in a variety of inflammatory diseases. Moreover, they have the ability to induce cell death. In this study, we show that M6229, a low-anticoagulant fraction of unfractionated heparin (UFH), rescues rats that were challenged by continuous infusion of calf thymus histones at a rate of 25 mg histones/kg/h. Histone infusion by itself induced hepatic and homeostatic dysfunction characterized by elevated activity of hepatic enzymes (ASAT and ALAT) and serum lactate levels as well as by a renal dysfunction, which contributed to the significantly increased mortality rate. M6229 was able to restore normal levels of both hepatic and renal parameters at 3 and 9 mg M6229/kg/h and prevented mortality of the animals. We conclude that M6229 is a promising therapeutic agent to treat histone-mediated disease.


Subject(s)
Acute Kidney Injury , Chemical and Drug Induced Liver Injury, Chronic , Rats , Animals , Histones/metabolism , Heparin/pharmacology , Anticoagulants/pharmacology , Kidney/metabolism , Acute Kidney Injury/drug therapy
5.
J Intern Med ; 293(3): 275-292, 2023 03.
Article in English | MEDLINE | ID: mdl-36382685

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had spread from China and, within 2 months, became a global pandemic. The infection from this disease can cause a diversity of symptoms ranging from asymptomatic to severe acute respiratory distress syndrome with an increased risk of vascular hyperpermeability, pulmonary inflammation, extensive lung damage, and thrombosis. One of the host defense systems against coronavirus disease 2019 (COVID-19) is the formation of neutrophil extracellular traps (NETs). Numerous studies on this disease have revealed the presence of elevated levels of NET components, such as cell-free DNA, extracellular histones, neutrophil elastase, and myeloperoxidase, in plasma, serum, and tracheal aspirates of severe COVID-19 patients. Extracellular histones, a major component of NETs, are clinically very relevant as they represent promising biomarkers and drug targets, given that several studies have identified histones as key mediators in the onset and progression of various diseases, including COVID-19. However, the role of extracellular histones in COVID-19 per se remains relatively underexplored. Histones are nuclear proteins that can be released into the extracellular space via apoptosis, necrosis, or NET formation and are then regarded as cytotoxic damage-associated molecular patterns that have the potential to damage tissues and impair organ function. This review will highlight the mechanisms of extracellular histone-mediated cytotoxicity and focus on the role that histones play in COVID-19. Thereby, this paper facilitates a bench-to-bedside view of extracellular histone-mediated cytotoxicity, its role in COVID-19, and histones as potential drug targets and biomarkers for future theranostics in the clinical treatment of COVID-19 patients.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Histones/metabolism , COVID-19/metabolism , Neutrophils/metabolism , SARS-CoV-2 , Extracellular Traps/metabolism
6.
Blood ; 137(19): 2694-2698, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33544829

ABSTRACT

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder caused by the development of autoantibodies targeting different domains of ADAMTS13. Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3 of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with the goal of reducing autoantibody binding revealed a significant tradeoff between autoantibody resistance and proteolytic activity. Here, we employed structural bioinformatics to identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-antibody complexes predicted that residues R568, L591, F592, K608, M609, R636, L637, R639, R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain. Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced reactivity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid position 608 did not interfere with processing of von Willebrand factor, positioning the resulting NGLY3-ADAMTS13 variant as a potential novel therapeutic option for treatment of iTTP.


Subject(s)
ADAMTS13 Protein/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Reactions , Autoantibodies/immunology , Autoantigens/immunology , Polysaccharides/immunology , Purpura, Thrombotic Thrombocytopenic/immunology , ADAMTS13 Protein/chemistry , ADAMTS13 Protein/metabolism , Amino Acid Substitution , Amino Acids , Antibodies, Monoclonal/immunology , Antigen-Antibody Complex/immunology , Autoantibodies/metabolism , Autoantigens/chemistry , Autoantigens/metabolism , Epitopes/immunology , Epitopes/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , von Willebrand Factor/metabolism
7.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768348

ABSTRACT

Vascular calcification (VC) is an important contributor and prognostic factor in the pathogenesis of cardiovascular diseases. VC is an active process mediated by the release of extracellular vesicles by vascular smooth muscle cells (VSMCs), and the enzyme neutral sphingomyelinase 2 (nSMase2 or SMPD3) plays a key role. Upon activation, the enzyme catalyzes the hydrolysis of sphingomyelin, thereby generating ceramide and phosphocholine. This conversion mediates the release of exosomes, a type of extracellular vesicles (EVs), which ultimately forms the nidus for VC. nSMase2 therefore represents a drug target, the inhibition of which is thought to prevent or halt VC progression. In search of novel druglike small molecule inhibitors of nSMase2, we have used virtual ligand screening to identify potential ligands. From an in-silico collection of 48,6844 small druglike molecules, we selected 996 compounds after application of an in-house multi-step procedure combining different filtering and docking procedures. Selected compounds were functionally tested in vitro; from this, we identified 52 individual hit molecules that inhibited nSMase2 activity by more than 20% at a concentration of 150 µM. Further analysis showed that five compounds presented with IC50s lower than 2 µM. Of these, compounds ID 5728450 and ID 4011505 decreased human primary VSMC EV release and calcification in vitro. The hit molecules identified here represent new classes of nSMase2 inhibitors that may be developed into lead molecules for the therapeutic or prophylactic treatment of VC.


Subject(s)
Exosomes , Muscle, Smooth, Vascular , Vascular Calcification , Humans , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Vascular Calcification/drug therapy , Vascular Calcification/pathology
8.
J Biol Chem ; 297(4): 101132, 2021 10.
Article in English | MEDLINE | ID: mdl-34461090

ABSTRACT

A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force-dependent cleavage at a single Tyr-Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13-VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.


Subject(s)
ADAMTS13 Protein/immunology , Autoantibodies/immunology , Purpura, Thrombocytopenic, Idiopathic/immunology , von Willebrand Factor/immunology , ADAMTS13 Protein/blood , Animals , Autoantibodies/blood , Biomarkers/blood , Humans , Purpura, Thrombocytopenic, Idiopathic/blood , von Willebrand Factor/metabolism
9.
Circulation ; 143(3): 254-266, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33167684

ABSTRACT

BACKGROUND: Acute infection is a well-established risk factor of cardiovascular inflammation increasing the risk for a cardiovascular complication within the first weeks after infection. However, the nature of the processes underlying such aggravation remains unclear. Lipopolysaccharide derived from Gram-negative bacteria is a potent activator of circulating immune cells including neutrophils, which foster inflammation through discharge of neutrophil extracellular traps (NETs). Here, we use a model of endotoxinemia to link acute infection and subsequent neutrophil activation with acceleration of vascular inflammation Methods: Acute infection was mimicked by injection of a single dose of lipopolysaccharide into hypercholesterolemic mice. Atherosclerosis burden was studied by histomorphometric analysis of the aortic root. Arterial myeloid cell adhesion was quantified by intravital microscopy. RESULTS: Lipopolysaccharide treatment rapidly enhanced atherosclerotic lesion size by expansion of the lesional myeloid cell accumulation. Lipopolysaccharide treatment led to the deposition of NETs along the arterial lumen, and inhibition of NET release annulled lesion expansion during endotoxinemia, thus suggesting that NETs regulate myeloid cell recruitment. To study the mechanism of monocyte adhesion to NETs, we used in vitro adhesion assays and biophysical approaches. In these experiments, NET-resident histone H2a attracted monocytes in a receptor-independent, surface charge-dependent fashion. Therapeutic neutralization of histone H2a by antibodies or by in silico designed cyclic peptides enables us to reduce luminal monocyte adhesion and lesion expansion during endotoxinemia. CONCLUSIONS: Our study shows that NET-associated histone H2a mediates charge-dependent monocyte adhesion to NETs and accelerates atherosclerosis during endotoxinemia.


Subject(s)
Atherosclerosis/metabolism , Cell Adhesion/physiology , Endotoxemia/metabolism , Monocytes/metabolism , Static Electricity , Animals , Atherosclerosis/chemically induced , Atherosclerosis/pathology , Cell Adhesion/drug effects , Endotoxemia/chemically induced , Endotoxemia/pathology , Extracellular Traps/metabolism , Humans , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/drug effects , Monocytes/pathology
10.
Arterioscler Thromb Vasc Biol ; 41(8): 2263-2276, 2021 08.
Article in English | MEDLINE | ID: mdl-34162230

ABSTRACT

OBJECTIVE: The Australian snake venom ptFV (Pseudonaja textilis venom-derived factor V) variant retains cofactor function despite APC (activated protein C)-dependent proteolysis. Here, we aimed to unravel the mechanistic principles by determining the role of the absent Arg306 cleavage site that is required for the inactivation of FVa (mammalian factor Va). APPROACH AND RESULTS: Our findings show that in contrast to human FVa, APC-catalyzed proteolysis of ptFVa at Arg306 and Lys507 does not abrogate ptFVa cofactor function. Remarkably, the structural integrity of APC-proteolyzed ptFVa is maintained indicating that stable noncovalent interactions prevent A2-domain dissociation. Using Molecular Dynamics simulations, we uncovered key regions located in the A1 and A2 domain that may be at the basis of this remarkable characteristic. CONCLUSIONS: Taken together, we report a completely novel role for uniquely adapted regions in ptFVa that prevent A2 domain dissociation. As such, these results challenge our current understanding by which strict regulatory mechanisms control FVa activity.


Subject(s)
Elapid Venoms/metabolism , Factor Va/metabolism , Protein C/metabolism , Animals , Cell Line , Cricetinae , Elapid Venoms/chemistry , Enzyme Activation , Factor Va/chemistry , Factor Va/genetics , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Interaction Domains and Motifs , Proteolysis , Structure-Activity Relationship , Substrate Specificity
11.
Int J Mol Sci ; 23(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35216161

ABSTRACT

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Subject(s)
Blood Platelets/physiology , Peptides/chemistry , Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex/chemistry , von Willebrand Factor/chemistry , Animals , Binding Sites , Blood Platelets/metabolism , Cells, Cultured , Horses , Humans , Microfluidics , Peptides/metabolism , Protein Binding , Stress, Mechanical , von Willebrand Factor/metabolism
12.
Haematologica ; 105(11): 2619-2630, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33131251

ABSTRACT

Antibodies that develop in patients with immune thrombotic thrombocytopenic purpura (iTTP) commonly target the spacer epitope R568/F592/R660/Y661/Y665 (RFRYY). In this study we present a detailed contribution of each residue in this epitope for autoantibody binding. Different panels of mutations were introduced here to create a large collection of full-length ADAMTS13 variants comprising conservative (Y←→F), semi-conservative (Y/F→L), non-conservative (Y/F→N) or alanine (Y/F/R→A) substitutions. Previously reported Gain-of-Function (GoF, KYKFF) and truncated 'MDTCS' variants were also included. Sera of 18 patients were screened against all variants. Conservative mutations of the aromatic residues did not reduce the binding of autoantibodies. Moderate resistance was achieved by replacing R568 and R660 by lysines or alanines. Semi-conservative mutations of aromatic residues show a moderate effectiveness in autoantibody resistance. Non-conservative asparagine or alanine mutations of aromatic residues are the most effective. In the mixtures of autoantibodies from the majority (89%) of patients screened, autoantibodies targeting the spacer RFRYY epitope have preponderance compared to other epitopes. Reductions in ADAMTS13 proteolytic activity were observed for all full-length mutant variants, in varying degrees. The greatest activity reductions were observed in the most autoantibody-resistant variants (15-35% residual activity in FRETS-VWF73). Among these, a triple-alanine mutant RARAA showed activity in a VWF multimer assay. This study shows that non-conservative and alanine modifications of residues within the exosite-3 spacer RFRYY epitope in full-length ADAMTS13 resist the binding of autoantibodies from iTTP patients, while retaining residual proteolytic activity. Our study provides a framework for the design of autoantibody-resistant ADAMTS13 variants for further therapeutic development.


Subject(s)
Purpura, Thrombotic Thrombocytopenic , ADAM Proteins , ADAMTS13 Protein/genetics , Autoantibodies , Epitopes , Humans , Immunoglobulin G , Purpura, Thrombotic Thrombocytopenic/genetics
13.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30452556

ABSTRACT

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Subject(s)
Atherosclerosis/etiology , CD8-Positive T-Lymphocytes/immunology , Lymphoma, B-Cell/complications , Macrophages/pathology , Oncogene Protein v-cbl/metabolism , Plaque, Atherosclerotic/etiology , Animals , Apoptosis , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
14.
Eur J Haematol ; 2018 May 15.
Article in English | MEDLINE | ID: mdl-29763513

ABSTRACT

INTRODUCTION: Patients suffering from congenital thrombotic thrombocytopenic purpura (cTTP) have a deficiency in ADAMTS13 due to mutations in their ADAMTS13 gene. OBJECTIVE: The aim of this study was to determine ADAMTS13 parameters (activity, antigen, and mutations), to investigate if the propositus suffered from child-onset cTTP, and to study the in vitro effect of the ADAMTS13 mutations. METHODS: ADAMTS13 activity and antigen were determined using the FRETS VWF73 assay and ELISA and ADAMTS13 mutations via sequencing of the exons. Mutant proteins were expressed in Chinese hamster ovary cells, and their expression was studied using fluorescence microscopy and ELISA. Molecular modeling was used to evaluate the effect of the mutations on ADAMTS13 structure and stability. RESULTS: The propositus was diagnosed with cTTP at the age of 20. ADAMTS13 activity was below 10%, and 2 compound heterozygous mutations, the p.R498C point and the p.G259PfsX133 frameshift mutation, were identified. Expression of ADAMTS13 mutants revealed that the p.R498C and the p.G259PfsX133 mutation cause secretion and translation defects in vitro, respectively. Molecular modeling showed that the R498 intra-domain interactions are lacking in the p.R498C mutant, resulting in protein instability. CONCLUSION: The ADAMTS13 mutations result in a severe ADAMTS13 deficiency explaining the patient's phenotype.

15.
Nucleic Acids Res ; 44(D1): D542-7, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26432833

ABSTRACT

In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein-protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL.


Subject(s)
Databases, Protein , Drug Discovery , Protein Interaction Mapping , Internet , Pharmaceutical Preparations/chemistry , Proteins/drug effects
16.
J Neuroinflammation ; 14(1): 105, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28494768

ABSTRACT

BACKGROUND: The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation. METHODS: Human monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice). RESULTS: We here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models. CONCLUSIONS: Together, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , CD40 Antigens/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Monocytes/drug effects , TNF Receptor-Associated Factor 6/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Cerebellum/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Monocytes/immunology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Nitric Oxide Synthase Type I/metabolism , Peptide Fragments/toxicity , Rats , Rats, Inbred Lew , Reactive Oxygen Species/metabolism , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Blood ; 123(1): 113-20, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24227818

ABSTRACT

The C domains of coagulation factors V (FV) and VIII (FVIII) are structurally conserved domains and share a common and essential function in membrane binding. In vivo regulation of thrombin formation strongly depends on the expression and regulation of the cofactor activities of FVIII and FV. With this study, we explored the possibility of inhibition of thrombin formation in full blood with small druglike molecules. Such compounds may serve as lead molecules for the development of a new type of orally available coagulation inhibitors that act by blocking the interaction between the C domains of FVIII and the membrane surface. We identified 9 novel molecules that are able to inhibit binding of the FVIII C2 domain to a model membrane by application of a combined ligand-based and target structure-based virtual screening approach that took into account the knowledge of a set of previously identified low-molecular-weight FVIII binders that were, however, not active in full blood. The half-maximal inhibitory concentration values of our newly identified compounds varied from 2.1 to 19.9 µM, of which 7 of 9 molecules did not appreciably inhibit FV membrane binding and were thus specific for FVIII. The most active bioactive compound showed activity in both plasma and in full blood.


Subject(s)
Anticoagulants/chemistry , Drug Design , Factor VIII/antagonists & inhibitors , Factor VIII/chemistry , Blood/drug effects , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Ligands , Models, Molecular , Plasma/drug effects , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Surface Plasmon Resonance , Surface Properties
19.
Blood ; 123(7): 1098-101, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24264231

ABSTRACT

Extracellular histones are considered to be major mediators of death in sepsis. Although sepsis is a condition that may benefit from low-dose heparin administration, medical doctors need to take into consideration the potential bleeding risk in sepsis patients who are already at increased risk of bleeding due to a consumption coagulopathy. Here, we show that mechanisms that are independent of the anticoagulant properties of heparin may contribute to the observed beneficial effects of heparin in the treatment of sepsis patients. We show that nonanticoagulant heparin, purified from clinical grade heparin, binds histones and prevents histone-mediated cytotoxicity in vitro and reduces mortality from sterile inflammation and sepsis in mouse models without increasing the risk of bleeding. Our results demonstrate that administration of nonanticoagulant heparin is a novel and promising approach that may be further developed to treat patients suffering from sepsis.


Subject(s)
Heparin/therapeutic use , Histones/antagonists & inhibitors , Sepsis/drug therapy , Sepsis/mortality , Animals , Anticoagulants/chemistry , Cells, Cultured , Chemical Fractionation , Cytoprotection/drug effects , Dose-Response Relationship, Drug , Heparin/chemistry , Heparin/pharmacology , Histones/metabolism , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Sepsis/chemically induced , Survival Analysis
20.
J Chem Inf Model ; 55(2): 294-307, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25622654

ABSTRACT

The CD154-CD40 receptor complex plays a pivotal role in several inflammatory pathways. Attempts to inhibit the formation of this complex have resulted in systemic side effects. Downstream inhibition of the CD40 signaling pathway therefore seems a better way to ameliorate inflammatory disease. To relay a signal, the CD40 receptor recruits adapter proteins called tumor necrosis factor receptor-associated factors (TRAFs). CD40-TRAF6 interactions are known to play an essential role in several inflammatory diseases. We used in silico, in vitro, and in vivo experiments to identify and characterize compounds that block CD40-TRAF6 interactions. We present in detail our drug docking and optimization pipeline and show how we used it to find lead compounds that reduce inflammation in models of peritonitis and sepsis. These compounds appear to be good leads for drug development, given the observed absence of side effects and their demonstrated efficacy for peritonitis and sepsis in mouse models.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , CD40 Antigens/antagonists & inhibitors , Drug Discovery/methods , Small Molecule Libraries , TNF Receptor-Associated Factor 6/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/toxicity , Cell Line , Databases, Chemical , High-Throughput Screening Assays , Inflammation/genetics , Inflammation/metabolism , Ligands , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peritonitis/drug therapy , Protein Binding , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL