Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 14(2): 3737-55, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24566637

ABSTRACT

Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.


Subject(s)
Aminoglycosides/metabolism , Anti-Bacterial Agents/metabolism , Aptamers, Nucleotide/metabolism , Aminoglycosides/analysis , Anti-Bacterial Agents/analysis , Aptamers, Nucleotide/chemistry , Base Sequence , DNA, Single-Stranded/chemistry , Fluorescein/chemistry , Kanamycin/analysis , Kanamycin/metabolism , Magnetics , Microfluidic Analytical Techniques/instrumentation , SELEX Aptamer Technique , Temperature
2.
Sensors (Basel) ; 8(7): 4296-4307, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-27879936

ABSTRACT

Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors) will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

3.
J Anal Methods Chem ; 2012: 415697, 2012.
Article in English | MEDLINE | ID: mdl-23326761

ABSTRACT

Small organic molecules are challenging targets for an aptamer selection using the SELEX technology (SELEX-Systematic Evolution of Ligans by EXponential enrichment). Often they are not suitable for immobilization on solid surfaces, which is a common procedure in known aptamer selection methods. The Capture-SELEX procedure allows the selection of DNA aptamers for solute targets. A special SELEX library was constructed with the aim to immobilize this library on magnetic beads or other surfaces. For this purpose a docking sequence was incorporated into the random region of the library enabling hybridization to a complementary oligo fixed on magnetic beads. Oligonucleotides of the library which exhibit high affinity to the target and a secondary structure fitting to the target are released from the beads for binding to the target during the aptamer selection process. The oligonucleotides of these binding complexes were amplified, purified, and immobilized via the docking sequence to the magnetic beads as the starting point of the following selection round. Based on this Capture-SELEX procedure, the successful DNA aptamer selection for the aminoglycoside antibiotic kanamycin A as a small molecule target is described.

SELECTION OF CITATIONS
SEARCH DETAIL