Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Biol Pharm Bull ; 46(6): 848-855, 2023.
Article in English | MEDLINE | ID: mdl-37258151

ABSTRACT

A methanol extract of rhizomes of Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) showed hepatoprotective effects against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. We had previously isolated 46 compounds, including several types of iridoid glycosides, phenylethanoid glycosides, and aromatics, etc., from the extract. Among them, picroside II, androsin, and 4-hydroxy-3-methoxyacetophenone exhibited active hepatoprotective effects at doses of 50-100 mg/kg, per os (p.o.) To characterize the mechanisms of action of these isolates and to clarify the structural requirements of phenylethanoid glycosides for their hepatoprotective effects, their effects were assessed in in vitro studies on (i) D-GalN-induced cytotoxicity in mouse primary hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. These isolates decreased the cytotoxicity caused by D-GalN without inhibiting LPS-induced macrophage activation and also reduced the sensitivity of hepatocytes to TNF-α. In addition, the structural requirements of phenylethanoids for the protective effects of D-GalN-induced cytotoxicity in mouse primary hepatocytes were evaluated.


Subject(s)
Picrorhiza , Rhizome , Mice , Animals , Rhizome/chemistry , Picrorhiza/chemistry , Lipopolysaccharides/toxicity , Tumor Necrosis Factor-alpha , Iridoid Glycosides/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Galactosamine/toxicity
2.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361930

ABSTRACT

The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 µM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17ß-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 µM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy.


Subject(s)
Limonins , Meliaceae , Humans , Limonins/pharmacology , Hep G2 Cells , Triglycerides , Autophagy , Autophagy-Related Proteins
3.
Bioorg Med Chem Lett ; 33: 127751, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33347966

ABSTRACT

Four chain-extended analogs (12a-12d) and two related de-O-sulfonated analogs (13a and 13c) by introducing alkyl groups (a: R = C3H7, b R = C6H13, c: R = C8H17, d: R = C10H21) to the side chains of salacinol (1), a natural α-glucosidase inhibitor from Ayurvedic traditional medicine "Salacia", were synthesized. The α-glucosidase inhibitory activities of all the synthesized analogs were evaluated in vitro. Against human intestinal maltase, the inhibitory activities of 12a and 13a with seven-carbon side chain were equal to that of 1. In contrast, analogs (12b-12d, and 13c) exhibited higher level of inhibitory activity against the same enzyme than 1 and had equal or higher potency than those of the clinically used anti-diabetics, voglibose, acarbose, and miglitol. Thus, elongation of the side chains of 1 was effective for specifically increasing the inhibitory activity against human intestinal maltase.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Intestines/enzymology , Salacia/chemistry , Sugar Alcohols/pharmacology , Sulfates/pharmacology , alpha-Glucosidases/metabolism , Animals , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Medicine, Ayurvedic , Molecular Conformation , Rats , Structure-Activity Relationship , Sugar Alcohols/chemical synthesis , Sugar Alcohols/chemistry , Sulfates/chemical synthesis , Sulfates/chemistry
4.
Chem Pharm Bull (Tokyo) ; 69(5): 464-471, 2021.
Article in English | MEDLINE | ID: mdl-33952856

ABSTRACT

A methanol extract from the underground part of Calanthe discolor Lindl. (Orchidaceae) demonstrated significant proliferative activity on human hair follicle dermal papilla cells (HFDPC, % of control: 120.8 ± 0.2%) at 100 µg/mL against HFDPC. Through bioassay-guided separation of the extract, a new indole glycoside named 6'-O-ß-D-apiofuranosylindican (1) was isolated along with six known compounds (2-7) including three indole glycosides. The stereostructure of 1 was elucidated based on its spectroscopic properties and chemical characteristics. Among the isolates, 1 (110.0 ± 1.0%), glucoindican (3, 123.9 ± 6.8%), and calanthoside (4, 158.6 ± 7.1%) showed significant proliferative activity at 100 µM. Furthermore, the active indole glycosides (1, 3, and 4) upregulated the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-7 (FGF-7) mRNA and protein in HFDPC, which could be the mechanism of their proliferative activity.


Subject(s)
Glycosides/pharmacology , Hair Follicle/drug effects , Indoles/pharmacology , Orchidaceae/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Glycosides/chemistry , Glycosides/isolation & purification , Hair Follicle/cytology , Humans , Indoles/chemistry , Indoles/isolation & purification , Molecular Structure , Stereoisomerism
5.
Chem Pharm Bull (Tokyo) ; 67(7): 675-689, 2019.
Article in English | MEDLINE | ID: mdl-31257323

ABSTRACT

An Orobanchaceae plant Cistanche tubulosa (SCHENK) WIGHT (Kanka-nikujuyou in Japanese), which is one of the authorized plant resources as Cistanches Herba in both Japanese and Chinese Pharmacopoeias, is a perennial parasitic plant growing on roots of sand-fixing plants. The stems of C. tubulosa have traditionally been used for treatment of impotence, sterility, lumbago, and body weakness as well as a promoting agent of blood circulation. In recent years, Cistanches Herba has also been widely used as a health food supplement in Japan, China, and Southeast Asian countries. Here we review our recent studies on chemical constituents from the stems of C. tubulosa as well as their bioactivities such as vasorelaxtant, hepatoprotective, and glucose tolerance improving effects.


Subject(s)
Biological Products/chemistry , Cistanche/chemistry , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Biological Products/isolation & purification , Biological Products/pharmacology , Cistanche/metabolism , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Plant Stems/chemistry , Plant Stems/metabolism , Protective Agents/chemistry , Protective Agents/isolation & purification , Protective Agents/pharmacology , Vasodilator Agents/chemistry , Vasodilator Agents/isolation & purification , Vasodilator Agents/pharmacology
6.
Int J Mol Sci ; 20(24)2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31847420

ABSTRACT

An acylated flavonol glycoside, helichrysoside, at a dose of 10 mg/kg/day per os for 14 days, improved the glucose tolerance in mice without affecting the food intake, visceral fat weight, liver weight, and other plasma parameters. In this study, using hepatoblastoma-derived HepG2 cells, helichrysoside, trans-tiliroside, and kaempferol 3-O-ß-D-glucopyranoside enhanced glucose consumption from the medium, but their aglycones and p-coumaric acid did not show this activity. In addition, several acylated flavonol glycosides were synthesized to clarify the structural requirements for lipid metabolism using HepG2 cells. The results showed that helichrysoside and related analogs significantly inhibited triglyceride (TG) accumulation in these cells. The inhibition by helichrysoside was more potent than that by other acylated flavonol glycosides, related flavonol glycosides, and organic acids. As for the TG metabolism-promoting activity in high glucose-pretreated HepG2 cells, helichrysoside, related analogs, and their aglycones were found to significantly reduce the TG contents in HepG2 cells. However, the desacyl flavonol glycosides and organic acids derived from the acyl groups did not exhibit an inhibitory impact on the TG contents in HepG2 cells. These results suggest that the existence of the acyl moiety at the 6'' position in the D-glucopyranosyl part is essential for glucose and lipid metabolism-promoting activities.


Subject(s)
Catechols/pharmacology , Chromones/pharmacology , Glucose/metabolism , Lipid Metabolism/drug effects , Acylation/drug effects , Animals , Cell Line, Tumor , Flavonoids/pharmacology , Flavonols/pharmacology , Glycosides/pharmacology , Hep G2 Cells , Humans , Kaempferols/pharmacology , Male , Mice , Plant Extracts/pharmacology , Structure-Activity Relationship
7.
J Org Chem ; 83(1): 185-193, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29189010

ABSTRACT

A facile and highly diastereoselective approach toward the synthesis of potent salacinol-type α-glucosidase inhibitors, originally isolated from plants of the genus "Salacia", was developed using the S-alkylation of thiosugars with epoxides in HFIP (∼90%, dr, α/ß = ∼ 26/1). The dr ratio of the product was significantly improved by the protocol as compared to that of the conventional S-alkylation of thiosugars (dr, α/ß = ∼ 8/1). The protocol could be used for gram scale synthesis of the desired compounds. The 3'-O-benzylated salacinol analogs, which are the most potent in vitro inhibitors to date, were synthesized and evaluated in vivo; all analogs suppressed blood glucose levels in maltose-loaded mice, at levels comparable to those of the antidiabetic agent, voglibose.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Sugar Alcohols/pharmacology , Sulfates/pharmacology , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Intestines/enzymology , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Sugar Alcohols/chemical synthesis , Sugar Alcohols/chemistry , Sulfates/chemical synthesis , Sulfates/chemistry
8.
J Org Chem ; 83(15): 8250-8264, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29972303

ABSTRACT

A hitherto unreported member of γ-alkylidenebutenolides in Melodorum fruticosum (Annonaceae), (4 E)-6-benzoyloxy-7-hydroxy-2,4-heptadiene-4-olide, named as isofruticosinol (4) was isolated from the methanol extract of flowers, along with the known related butenolides, namely, the (4 Z)-isomer (3) of 4, melodrinol (1), and its (4 E)-isomer (2). To unambiguously determine the absolute configuration at the C-6 position in these butenolides, the first total syntheses of both enantiomers of 2-4 were achieved over 6-7 steps from commercially available D- or L-ribose (D- and L-5). Using the same protocol, both enantiomers of 1 were also synthesized. Based on chiral HPLC analysis of all synthetic compounds ( S- and R-1-4), all naturally occurring butenolides were assigned as partial racemic mixtures with respect to the chiral center at C-6 (enantiomeric ratio, 6 S/6 R = ∼83/17). Furthermore, the melanogenesis inhibitory activities of S- and R-1-4 were evaluated, with all shown to be potent inhibitors with IC50 values in the range 0.29-2.9 µM, regardless of differences in the stereochemistry at C-6. In particular, S-4 (IC50 = 0.29 µM) and R-4 (0.39 µM) showed potent inhibitory activities compared with that of reference standard arbutin (174 µM).


Subject(s)
4-Butyrolactone/analogs & derivatives , Annonaceae/chemistry , Melanins/biosynthesis , 4-Butyrolactone/chemical synthesis , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Animals , Cell Line, Tumor , Chemistry Techniques, Synthetic , Mice , Plants, Medicinal/chemistry
9.
Int J Mol Sci ; 18(2)2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28230758

ABSTRACT

A simultaneous quantitative analytical method for 13 stilbenoids including (-)-hopeaphenol (1), (+)-isohopeaphenol (2), hemsleyanol D (3), (-)-ampelopsin H (4), vaticanols A (5), E (6), and G (7), (+)-α-viniferin (8), pauciflorol A (9), hopeafuran (10), (-)-balanocarpol (11), (-)-ampelopsin A (12), and trans-resveratrol 10-C-ß-d-glucopyranoside (13), and two dihydroisocoumarins, phayomphenols A1 (14) and A2 (15) in the extract of Shorea roxburghii (dipterocarpaceae) was developed. According to the established protocol, distributions of these 15 polyphenols (1-15) in the bark and wood parts of S. roxburghii and a related plant Cotylelobium melanoxylon were evaluated. In addition, the principal polyphenols (1, 2, 8, 13-15) exhibited hepatoprotective effects against d-galactosamine (d-galN)/lipopolysaccharide (LPS)-induced liver injury in mice at a dose of 100 or 200 mg/kg, p.o. To characterize the mechanisms of action, the isolates were examined in in vitro studies assessing their effects on (i) d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes; (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages; and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of these polyphenols (1, 2, and 8) were suggested to be dependent on the inhibition of LPS-induced macrophage activation and reduction of sensitivity of hepatocytes to TNF-α. However, none of the isolates reduced the cytotoxicity caused by d-GalN.


Subject(s)
Dipterocarpaceae/chemistry , Hepatocytes/drug effects , Isocoumarins/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Stilbenes/pharmacology , Animals , Cell Line , Chromatography, High Pressure Liquid , Disease Models, Animal , Galactosamine/adverse effects , Hepatocytes/metabolism , Humans , Isocoumarins/chemistry , Lipopolysaccharides/adverse effects , Liver/drug effects , Liver/metabolism , Liver Diseases/drug therapy , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Nitric Oxide/metabolism , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Protective Agents/chemistry , Stilbenes/chemistry , Tumor Necrosis Factor-alpha/pharmacology
10.
Int J Mol Sci ; 18(11)2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29160820

ABSTRACT

Two new ergostane-type sterols; (22E)-5α,6α-epoxyergosta-8,14,22-triene-3ß,7ß-diol (1) and 5α,6α-epoxyergost-8(14)-ene-3ß,7α-diol (2) were isolated from the fruiting bodies of king trumpet mushroom (Pleurotus eryngii), along with eight known compounds (3-10). All isolated compounds were evaluated for their inhibitory effects on aromatase. Among them, 4 and 6 exhibited comparable aromatase inhibitory activities to aminoglutethimide.


Subject(s)
Agaricales/chemistry , Aromatase Inhibitors/pharmacology , Biological Products/pharmacology , Ergosterol/analogs & derivatives , Aromatase/metabolism , Aromatase Inhibitors/chemistry , Aromatase Inhibitors/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Enzyme Activation/drug effects , Ergosterol/chemistry , Ergosterol/isolation & purification , Ergosterol/pharmacology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Molecular Structure
11.
Molecules ; 22(12)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29261124

ABSTRACT

In our continuing study of biologically active natural products from the fruit of Alpinia galanga (Zingiberaceae), we newly isolated three new labdane-type diterpenes, termed galangalditerpenes A-C (1-3), along with four known sesquiterpenes (4-7) and two diterpenes (8 and 9). The stereostructures of 1-3 were elucidated on the basis of their spectroscopic properties. The melanogenesis inhibitory activities in theophylline-stimulated murine B16 melanoma 4A5 cells of these isolates, including the new diterpenes (1-3, IC50 = 4.4, 8.6, and 4.6 µM, respectively), were found to be more than 6-87-fold higher than that of arbutin (174 µM), a commercially available positive control.


Subject(s)
Alpinia/chemistry , Diterpenes/chemistry , Fruit/chemistry , Melanins/metabolism , Animals , Arbutin/chemistry , Arbutin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Diterpenes/isolation & purification , Diterpenes/pharmacology , Melanoma, Experimental , Mice , Molecular Conformation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Structure-Activity Relationship
12.
Bioorg Med Chem ; 24(23): 6215-6224, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27756508

ABSTRACT

An aqueous acetone extract from the fruit of Alpinia galanga (Zingiberaceae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells (IC50=7.3µg/mL). Through bioassay-guided separation of the extract, a new 7-O-9'-linked neolignan, named galanganol D diacetate (1), was isolated along with 16 known compounds including 14 phenylpropanoids (2-15). The structure of 1, including its absolute stereochemistry in the C-7 position, was elucidated by means of extensive NMR analysis and total synthesis. Among the isolates, 1 (IC50=2.5µM), 1'S-1'-acetoxychavicol acetate (2, 5.0µM), and 1'S-1'-acetoxyeugenol acetate (3, 5.6µM) exhibited a relatively potent inhibitory effect without notable cytotoxicity at effective concentrations. The following structural requirements were suggested to enhance the inhibitory activity of phenylpropanoids on melanogenesis: (i) compounds with 4-acetoxy group exhibit higher activity than those with 4-hydroxy group; (ii) 3-methoxy group dose not affect the activity; (iii) acetylation of the 1'-hydroxy moiety enhances the activity; and (iv) phenylpropanoid dimers with the 7-O-9'-linked neolignan skeleton exhibited higher activity than those with the corresponding monomer. Their respective enantiomers [1' (IC50=1.9µM) and 2' (4.5µM)] and racemic mixtures [(±)-1 (2.2µM) and (±)-2 (4.4µM)] were found to exhibit melanogenesis inhibitory activities equivalent to those of the naturally occurring optical active compounds (1 and 2). Furthermore, the active compounds 1-3 inhibited tyrosinase, tyrosine-related protein (TRP)-1, and TRP-2 mRNA expressions, which could be the mechanism of melanogenesis inhibitory activity.


Subject(s)
Alpinia/chemistry , Lignans/pharmacology , Melanins/metabolism , Melanocytes/drug effects , Animals , Cell Line, Tumor , Fruit/chemistry , Gene Expression , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lignans/chemistry , Lignans/isolation & purification , Melanocytes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , RNA, Messenger/metabolism , Stereoisomerism , Theophylline/pharmacology
13.
Bioorg Med Chem ; 24(16): 3705-15, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27325449

ABSTRACT

Using an in silico method, seven analogs bearing hydrophobic substituents (8a: Me, 8b: Et, 8c: n-Pent, 8d: n-Hept, 8e: n-Tridec, 8f: isoBu and 8g: neoPent) at the 3'-O-position in salacinol (1), a highly potent natural α-glucosidase inhibitor from Ayurvedic traditional medicine 'Salacia', were designed and synthesized. In order to verify the computational SAR assessments, their α-glucosidase inhibitory activities were evaluated in vitro. All analogs (8a-8g) exhibited an equal or considerably higher level of inhibitory activity against rat small intestinal α-glucosidases compared with the original sulfonate (1), and were as potent as or higher in potency than the clinically used anti-diabetics, voglibose, acarbose or miglitol. Their activities against human maltase exhibited good relationships to the results obtained with enzymes of rat origin. Among the designed compounds, the one with a 3'-O-neopentyl moiety (8g) was most potent, with an approximately ten fold increase in activity against human maltase compared to 1.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Medicine, Ayurvedic , Sugar Alcohols/pharmacology , Sulfates/pharmacology , Animals , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Hydrophobic and Hydrophilic Interactions , Intestine, Small/drug effects , Intestine, Small/enzymology , Microsomes/drug effects , Microsomes/enzymology , Rats , Structure-Activity Relationship , Sugar Alcohols/chemistry , Sugar Alcohols/isolation & purification , Sulfates/chemistry , Sulfates/isolation & purification
14.
J Nat Prod ; 79(8): 2005-13, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27419473

ABSTRACT

CC chemokine receptor 3 (CCR3) is expressed selectively in eosinophils, basophils, and some Th2 cells and plays a major role in allergic diseases. A methanol extract from the arils of Myristica fragrans inhibited CC chemokine ligand 11-induced chemotaxis in CCR3-expressing L1.2 cells at 100 µg/mL. From this extract, eight new neolignans, maceneolignans A-H (1-8), were isolated, and their stereostructures were elucidated from their spectroscopic values and chemical properties. Of those constituents, compounds 1, 4, 6, and 8 and (+)-erythro-(7S,8R)-Δ(8')-7-hydroxy-3,4-methylenedioxy-3',5'-dimethoxy-8-O-4'-neolignan (11), (-)-(8R)-Δ(8')-3,4-methylenedioxy-3',5'-dimethoxy-8-O-4'-neolignan (17), (+)-licarin A (20), nectandrin B (25), verrucosin (26), and myristicin (27) inhibited CCR3-mediated chemotaxis at a concentration of 1 µM. Among them, 1 (EC50 1.6 µM), 6 (1.5 µM), and 8 (1.4 µM) showed relatively strong activities, which were comparable to that of a synthetic CCR3 selective antagonist, SB328437 (0.78 µM).


Subject(s)
Lignans/isolation & purification , Lignans/pharmacology , Myristica/chemistry , Receptors, CCR3/antagonists & inhibitors , Chemotaxis/drug effects , Eosinophils/metabolism , Furans/pharmacology , Humans , Lignans/chemistry , Molecular Structure , Stereoisomerism
15.
Biol Pharm Bull ; 39(10): 1675-1682, 2016.
Article in English | MEDLINE | ID: mdl-27725445

ABSTRACT

Human malignant melanomas remain associated with dismal prognosis due to their resistance to apoptosis and chemotherapy. There is growing interest in plant oligostilbenoids owing to their pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. Recent studies have demonstrated that resveratrol, a well-known stilbenoid from red wine, exhibits cell cycle-disrupting and apoptosis-inducing activities on melanoma cells. The objective of our study was to evaluate the anti-melanoma effect of oligostilbenoids isolated from the bark of Shorea roxburghii. Among the isolates, four resveratrol oligomers, i.e., (-)-hopeaphenol, vaticanol B, hemsleyanol D, and (+)-α-viniferin, possessed more potent antiproliferative action than did resveratrol against SK-MEL-28 melanoma cells. Cell cycle analysis revealed that (-)-hopeaphenol, hemsleyanol D, and (+)-α-viniferin arrested cell division cycle at the G1 phase, whereas vaticanol B had little effect on the cell cycle. In addition, cell proliferation assay also revealed that (+)-α-viniferin induced DNA damage followed by induction of apoptosis in SK-MEL-28 cells, which was confirmed by an increased expression of γ-H2AX and cleaved caspase-3, respectively. The compounds vaticanol B, hemsleyanol D, and resveratrol significantly increased the expression of p21, suggesting that they are able to block cell cycle progression. Moreover, these oligostilbenoids downmodulated cylin D1 expression and extracellular signal-regulated kinase (ERK) activation. Furthermore, hemsleyanol D, (+)-α-viniferin, and resveratrol significantly decreased the expression of cyclin B1, which could also suppress cell cycle progression. The present study thus suggests that these plant oligostilbenoids are effective as therapeutic or chemopreventive agents against melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Dipterocarpaceae , Stilbenes/pharmacology , Administration, Topical , Apoptosis/drug effects , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Plant Bark
16.
Chem Pharm Bull (Tokyo) ; 64(7): 880-5, 2016.
Article in English | MEDLINE | ID: mdl-27373643

ABSTRACT

A methanol extract of the flowers of Mammea siamensis (Calophyllaceae) was found to inhibit enzymatic activity against aromatase (IC50=16.5 µg/mL). From the extract, two new geranylated coumarins, mammeasins C (1) and D (2), were isolated together with seven coumarins: 8-hydroxy-5-methyl-7-(3,7-dimethyl-octa-2,6-dienyl)-9-(2-methyl-1-oxobutyl)-4,5-dihydropyrano[4,3,2-de]chromen-2-one (9), 8-hydroxy-5-methyl-7-(3,7-dimethyl-octa-2,6-dienyl)-9-(3-methyl-1-oxobutyl)-4,5-dihydropyrano[4,3,2-de]chromen-2-one (10), mammeas A/AA (14), A/AB (15), A/AA cyclo D (18), E/BA (23), and E/BC cyclo D (25). The structures of 1 and 2 were elucidated on the basis of spectroscopic evidence. Among the isolates including 17 previously reported coumarins, 1 (IC50=2.7 µM), 2 (3.6 µM), and mammea B/AB cyclo D (21, 3.1 µM) showed relatively strong inhibitory activities comparable to the activity of the synthetic nonsteroidal aromatase inhibitor aminoglutethimide (2.0 µM).


Subject(s)
Aromatase Inhibitors/pharmacology , Aromatase/metabolism , Coumarins/pharmacology , Flowers/chemistry , Mammea/chemistry , Aromatase Inhibitors/chemistry , Aromatase Inhibitors/isolation & purification , Coumarins/chemistry , Coumarins/isolation & purification , Dose-Response Relationship, Drug , Humans , Molecular Structure , Recombinant Proteins/metabolism , Structure-Activity Relationship
17.
Int J Mol Sci ; 17(4)2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27104518

ABSTRACT

Three gedunin-type limonoids, gedunin (1), 6α-acetoxygedunin (2), and 7-deacetoxy-7-oxogedunin (3), which were isolated from the seed and flower oils of andiroba (Carapa guianensis Aublet, Meliaceae), exhibited hepatoprotective effects at doses of 25 mg/kg, p.o. against d-galactosamine (d-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. To characterize the mechanisms of action of 1-3 and clarify the structural requirements for their hepatoprotective effects, 17 related limonoids (1-17) isolated from the seed and/or flower oils of C. guianensis were examined in in vitro studies assessing their effects on (i) d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of 1-3 are likely to involve the inhibition of LPS-induced macrophage activation and reduced sensitivity of hepatocytes to TNF-α; however, these compounds did not decrease the cytotoxicity caused by d-GalN. In addition, the structural requirements of limonoids (1-17) for inhibition of LPS-induced NO production in mouse peritoneal macrophages and TNF-α-induced cytotoxicity in L929 cells were evaluated.


Subject(s)
Hepatocytes/drug effects , Limonins/pharmacology , Meliaceae/chemistry , Animals , Cells, Cultured , Chemical and Drug Induced Liver Injury/prevention & control , Flowers/chemistry , Limonins/chemistry , Limonins/isolation & purification , Lipopolysaccharides/toxicity , Macrophages/drug effects , Male , Mice , Mice, Inbred Strains , Nitric Oxide/metabolism , Seeds/chemistry
18.
Int J Mol Sci ; 17(12)2016 Nov 26.
Article in English | MEDLINE | ID: mdl-27898032

ABSTRACT

Acylated oleanane-type triterpene saponins, namely chakasaponins I (1) and II (2), floratheasaponin A (3), and their analogs, together with catechins-including (-)-epigallocatechin 3-O-gallate (4), flavonoids, and caffeine-have been isolated as characteristic functional constituents from the extracts of "tea flower", the flower buds of Camellia sinensis (Theaceae), which have common components with that of the leaf part. These isolates exhibited antiproliferative activities against human digestive tract carcinoma HSC-2, HSC-4, MKN-45, and Caco-2 cells. The antiproliferative activities of the saponins (1-3, IC50 = 4.4-14.1, 6.2-18.2, 4.5-17.3, and 19.3-40.6 µM, respectively) were more potent than those of catechins, flavonoids, and caffeine. To characterize the mechanisms of action of principal saponin constituents 1-3, a flow cytometric analysis using annexin-V/7-aminoactinomycin D (7-AAD) double staining in HSC-2 cells was performed. The percentage of apoptotic cells increased in a concentration-dependent manner. DNA fragmentation and caspase-3/7 activation were also detected after 48 h. These results suggested that antiproliferative activities of 1-3 induce apoptotic cell death via activation of caspase-3/7.


Subject(s)
Camellia sinensis/chemistry , Catechin/analogs & derivatives , Oleanolic Acid/analogs & derivatives , Plant Extracts/pharmacology , Saponins/pharmacology , Caspase 3/metabolism , Caspase 7/metabolism , Catechin/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Fragmentation/drug effects , Flowers/chemistry , Humans , Oleanolic Acid/pharmacology , Plant Extracts/chemistry
19.
Molecules ; 21(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27447599

ABSTRACT

A quantitative analytical method for five aporphine alkaloids, nuciferine (1), nornuciferine (2), N-methylasimilobine (3), asimilobine (4), and pronuciferine (5), and five benzylisoquinoline alkaloids, armepavine (6), norarmepavine (7), N-methylcoclaurine (8), coclaurine (9), and norjuziphine (10), identified as the constituents responsible for the melanogenesis inhibitory activity of the extracts of lotus flowers (the flower buds of Nelumbo nucifera), has been developed using liquid chromatography-mass spectrometry. The optimum conditions for separation and detection of these 10 alkaloids were achieved on a πNAP column, a reversed-phase column with naphthylethyl group-bonded silica packing material, with CH3CN-0.2% aqueous acetic acid as the mobile phase and using mass spectrometry equipped with a positive-mode electrospray ionization source. According to the protocol established, distributions of these 10 alkaloids in the petal, receptacle, and stamen parts, which were separated from the whole flower, were examined. As expected, excellent correlations were observed between the total alkaloid content and melanogenesis inhibitory activity. Among the active alkaloids, nornuciferine (2) was found to give a carbamate salt (2'') via formation of an unstable carbamic acid (2') by absorption of carbon dioxide from the air.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Flowers/chemistry , Lotus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Alkaloids/isolation & purification , Animals , Carbamates/chemistry , Cell Line, Tumor , Chromatography, Liquid , Enzyme Activation/drug effects , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Melanins/biosynthesis , Melanoma, Experimental , Mice , Monophenol Monooxygenase/antagonists & inhibitors , Plant Extracts/isolation & purification
20.
J Nat Prod ; 78(7): 1536-42, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26135746

ABSTRACT

The first total synthesis of the 7,7-dimethylaporphinoid, 4,5-didehydroguadiscine (6), originally isolated from the stems and roots of Hornschuchia oblique (Annonaceae), was achieved by the condensation of homopiperonylamine (7) with an α,α-dimethylphenylacetic acid derivative (8) and subsequent Pschorr reaction of the resulting benzylisoquinoline intermediate (22). The reported (13)C NMR data were partially revised on the basis of the analysis of HMBC spectra measured under different conditions. The melanogenesis inhibitory activity (IC50 = 4.7 µM) of 6 was 40 times stronger than that of arbutin (174 µM), which was used as reference standard. Furthermore, 6 was the most potent natural melanogenesis inhibitor within this class of compounds.


Subject(s)
Annonaceae/chemistry , Aporphines/chemical synthesis , Aporphines/pharmacology , Melanins/antagonists & inhibitors , Plants, Medicinal/chemistry , Aporphines/chemistry , Arbutin/pharmacology , Brazil , Esters , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL