Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Med Phys ; 35(4): 1232-40, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18491515

ABSTRACT

The benefits of using Synchrony Respiratory Tracking System (RTS) in conjunction with the CyberKnife robotic treatment device to treat a "breathing tumor" in an anthropomorphic, tissue-equivalent, thoracic phantom have been investigated. The following have been studied: (a) Synchrony's ability to allow the CyberKnife to deliver accurately a planned dose distribution to the free-breathing phantom and (b) the dosimetric implications when irregularities in the breathing cycle and phase differences between internal (tumor) and external (chest) motion exist in the course of one treatment fraction. The breathing phantom PULMONE (phantom used in lung motion experiments) has been used, which can imitate regular or irregular breathing patterns. The breathing traces from two patients with lung cancer have been selected as input. Both traces were irregular in amplitude, frequency, and base line. Patient B demonstrated a phase difference between internal and external motion, whereas patient A did not. The experiment was divided into three stages: In stage I-static, the treatment was delivered to the static phantom. In stage II-motion, the phantom was set to breathe, following the breathing trace of each of the two patients. Synchrony was switched off, so no motion compensation was made. In stage III-compensation, the phantom was set to breathe and Synchrony was switched on. A linear correspondence model was chosen to allow for phase differences between internal and external motion. Gafchromic EBT film was inserted in the phantom tumor to measure dose. To eradicate small errors in film alignment during readout, a gamma comparison with pass criteria of 3%/3 mm was selected. For a more quantitative approach, the percentage of pixels in each gamma map that exceeded the value of 1 (P1) was also used. For both breathing signals, the dose blurring caused by the respiratory motion of the tumor in stage II was degraded considerably compared with stage I (P1 = 15% for patient A and 8% for patient B). The motion compensation via the linear correspondence model was sufficient to provide a dose distribution that satisfied the set gamma criteria (P1=3% for patient A and 2% for patient B). Synchrony RTS has been found satisfactory in recovering the initial detail in dose distribution, for realistic breathing signals, even in the case where a phase delay between internal tumor motion and external chest displacement exists. For the signals applied here, a linear correspondence model provided an acceptable degree of motion compensation.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Lung Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy, Computer-Assisted/methods , Respiratory Mechanics , Robotics/methods , Equipment Design , Equipment Failure Analysis , Humans , Lung Neoplasms/diagnostic imaging , Radiography , Reproducibility of Results , Sensitivity and Specificity
2.
Phys Med Biol ; 51(1): N1-7, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16357424

ABSTRACT

The potential for systematic errors in radiotherapy of a breathing patient is considered using the statistical model of Bortfeld et al (2002 Phys. Med. Biol. 47 2203-20). It is shown that although averaging over 30 fractions does result in a narrow Gaussian distribution of errors, as predicted by the central limit theorem, the fact that one or a few samples of the breathing patient's motion distribution are used for treatment planning (in contrast to the many treatment fractions that are likely to be delivered) may result in a much larger error with a systematic component. The error distribution may be particularly large if a scan at breath-hold is used for planning.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Respiration , Humans , Models, Statistical , Motion , Movement , Normal Distribution , Phantoms, Imaging , Probability , Radiotherapy Dosage , Reproducibility of Results
3.
Phys Med Biol ; 51(14): 3359-74, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16825735

ABSTRACT

The contribution of organ and tumour motion to the degradation of planned dose distributions during radiotherapy to the breathing lung has been experimentally investigated and quantified. An anthropomorphic, tissue-equivalent breathing phantom with deformable lungs has been built, in which the lung tumour can be driven in any arbitrary 3D trajectory. The trajectory is programmed into a motion controller connected to a high-precision moving platform that is connected to the tumour. The motion controller is connected to the accelerator's dose counter and the speed of motion is scaled to the dose rate. This ensures consistent delivery despite variation in either the dose rate or inter-segment timing. For this study, the phantom was made to breathe by a set of periodic equations representing respiratory motion by an asymmetric, trigonometric function. Several motion amplitudes were selected to be applied in the primary axis of motion. Five three-dimensional, geometrically conformal (3DCRT) fractions with different starting phases (spaced uniformly in the breathing cycle) were delivered to the phantom and compared to a delivery where the phantom was static at the end-expiration position. A set of intensity-modulated radiotherapy plans (IMRT) was subsequently delivered in the same manner. Bigger amplitudes of motion resulted in a higher degree of dose blurring. Severe underdosages were observed when deliberately selecting the PTV wrongly, their extent being correlated with the degree of margin error. IMRT motion-averaged dose distributions exhibited areas of high dose in the gross tumour volume (GTV) which were not present in the static irradiations, arising from booster segments that the optimizer was creating to achieve planning target volume (PTV) homogeneity during the inverse-planning process. 3DCRT, on the other hand, did not demonstrate such effects. It has been concluded that care should be taken to control the delivered fluence when delivering IMRT to the breathing lung, even when the PTV margin has been adequately chosen to include the extent of the breathing motion.


Subject(s)
Lung Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Humans , Imaging, Three-Dimensional , Movement , Phantoms, Imaging , Radiation Dosage , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results
4.
Radiother Oncol ; 77(3): 271-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16274762

ABSTRACT

BACKGROUND AND PURPOSE: Patients with non-small cell lung cancer (NSCLC) often have inhomogeneous lung perfusion. Radiotherapy planning computed tomography (CT) scans have been accurately co-registered with lung perfusion single photon emission computed tomography (SPECT) scans to design radiotherapy treatments which limit dose to healthy 'perfused' lung. PATIENTS AND METHODS: Patients with localised NSCLC had CT and SPECT scans accurately co-registered in the planning system. The SPECT images were used to define a volume of perfused 'functioning' lung (FL). Inverse planning software was used to create 3D-conformal plans, the planning objective being either to minimise the dose to whole lungs (WL) or to minimise the dose to FL. RESULTS: Four plans were created for each of six patients. The mean difference in volume between WL and FL was 1011.7 cm(3) (range 596.2-1581.1cm(3)). One patient with bilateral upper lobe perfusion deficits had a 16% reduction in FLV(20) (the percentage volume of functioning lung receiving >or=20 Gy). The remaining patients had inhomogeneous perfusion deficits such that inverse planning was not able to sufficiently optimise beam angles to avoid functioning lung. CONCLUSION: SPECT perfusion images can be accurately co-registered with radiotherapy planning CT scans and may be helpful in creating treatment plans for patients with large perfusion deficits.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Tomography, Emission-Computed, Single-Photon , Dose Fractionation, Radiation , Humans , Lung/diagnostic imaging , Patient Care Planning , Radiation Injuries/prevention & control
5.
Phys Med Biol ; 50(6): 1035-46, 2005 Mar 21.
Article in English | MEDLINE | ID: mdl-15798307

ABSTRACT

The aim of this study has been to explicitly include the functional heterogeneity of an organ as a factor that contributes to the probability of complication of normal tissues following radiotherapy. Situations for which the inclusion of this information can be advantageous to the design of treatment plans are then investigated. A Java program has been implemented for this purpose. This makes use of a voxelated model of a patient, which is based on registered anatomical and functional data in order to enable functional voxel weighting. Using this model, the functional dose-volume histogram (fDVH) and the functional normal tissue complication probability (fNTCP) are then introduced as extensions to the conventional dose-volume histogram (DVH) and normal tissue complication probability (NTCP). In the presence of functional heterogeneity, these tools are physically more meaningful for plan evaluation than the traditional indices, as they incorporate additional information and are anticipated to show a better correlation with outcome. New parameters m(f), n(f) and TD(50f) are required to replace the m, n and TD(50) parameters. A range of plausible values was investigated, awaiting fitting of these new parameters to patient outcomes where functional data have been measured. As an example, the model is applied to two lung datasets utilizing accurately registered computed tomography (CT) and single photon emission computed tomography (SPECT) perfusion scans. Assuming a linear perfusion-function relationship, the biological index mean perfusion weighted lung dose (MPWLD) has been extracted from integration over outlined regions of interest. In agreement with the MPWLD ranking, the fNTCP predictions reveal that incorporation of functional imaging in radiotherapy treatment planning is most beneficial for organs with a large volume effect and large focal areas of dysfunction. There is, however, no additional advantage in cases presenting with homogeneous function. Although presented for lung radiotherapy, this model is general. It can also be applied to positron emission tomography (PET)-CT or functional magnetic resonance imaging (fMRI)-CT registered data and extended to the functional description of tumour control probability.


Subject(s)
Algorithms , Organ Specificity , Radiation Injuries/diagnosis , Radiation Injuries/etiology , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/adverse effects , Risk Assessment/methods , Body Burden , Computer Simulation , Dose-Response Relationship, Radiation , Humans , Models, Biological , Radiation Injuries/prevention & control , Radiotherapy Dosage , Relative Biological Effectiveness , Risk Factors
6.
Med Phys ; 31(4): 892-901, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15125007

ABSTRACT

The purpose of this work was to determine a segmentation protocol for the treatment of localized non-small-cell lung cancer (NSCLC) with intensity-modulated radiotherapy (IMRT) that is as effective as possible while practically simple and hence robust to known practical inaccuracies. This study focused on the stratification of continuous profiles into a discrete number of intensity levels. The selection of the segmentation parameters for the delivery of the fluence profiles using multiple static fields has been considered. Five-field equispaced IMRT treatment plans of five patients with NSCLC were selected. The study comprised nine treatment plans for each patient, starting from a conformal plan, optimizing it for IMRT and then segmenting it utilizing different numbers of segments in each case and optimizing for segment weights separately. A conformal plan, optimized for beam directions, collimator and wedge angles, was also used for comparison with the IMRT plans, so as to consider the best coplanar conformal case. A dose objective for the PTV and the organs-at-risk plus a constraint for the spinal cord were set for all inverse plans. All stages were compared with the aid of dose-volume histograms, dose distributions at the plane of the isocenter, intensity maps for key beams and plots of PTV homogeneity and overall conformality versus complexity. The unsegmented IMRT plans gave the best results but cannot be realized in practice with an MLC. They were best approximated by plans that needed 106-167 segments to deliver, but did not deteriorate significantly when approximated by plans which required 26-40 segments in total. All segmented IMRT plans gave a better lung sparing than the conformal plans, indicating that the deterioration of IMRT plans following segmentation is not equivalent to that of unmodulated, conformal plans. However, optimized conformal plans have the potential to approach the lung sparing achieved by segmented IMRT plans. Among the IMRT situations examined, five-field treatment plans for the lung, utilizing a maximum of 40 segments in total, have proven to give a good approximation of the IMRT plans with continuous modulation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Algorithms , Humans , Radiographic Image Interpretation, Computer-Assisted/methods , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
7.
Phys Med Biol ; 48(22): N313-21, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14680274

ABSTRACT

A common unwanted difficulty in treatment planning, especially in non-coplanar radiotherapy set-ups, is the potential collision of the rotating gantry with the couch and/or the patient's body. A technique and computer program that detects these and signals avoidance of such beam directions is presented. The problem was approached using analytical geometry. The separate components within the treatment room have either been measured and modelled for an Elekta linear accelerator, or read out from a Pinnacle3 treatment planning system and are represented as an integer grid of points in three-dimensional (3D) space. The module is attached to the treatment planning system and can provide rejection or acceptance of unwanted beam directions in a plan. In contrast to previous work that has only used patient models, each individual patient's outlines are considered here in their actual treatment position inclusive of any immobilization device. The extremities of the patient superiorly and inferiorly to the scanned region are simulated by an expanded version of the RANDO phantom. In this way, 'potential' collisions can be detected in addition to the certain ones. Patient position is not a limiting factor for the accuracy of the collision detection anymore, as each set-up is always created around the isocentre. Maps of allowed and forbidden zones within the treatment suite have been created by running the code for all possible gantry and couch angles for three commonly arising cases: a head and neck plan utilizing a small stereotactic collimator, a prostate plan with multileaf collimators and an abdominal plan with the lead tray attached. In the last case, the 3D map permitted significantly fewer set-up combinations. Good agreement between prediction and experiment confirmed the capability of the program and introduces a promising add-on for treatment planning.


Subject(s)
Image Processing, Computer-Assisted , Radiotherapy Planning, Computer-Assisted , Humans
8.
Radiother Oncol ; 91(3): 349-52, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18995919

ABSTRACT

IMRT and 3-dimensional conformal radiotherapy (3-DCRT) plans of 25 patients with non-small cell lung (NSCLC) were compared in terms of planning target volume (PTV) coverage and sparing of functional lung (FL) defined by a SPECT perfusion scan. IMRT resulted in significant reduction of functional V(20) and mean lung dose in stage III patients with inhomogeneous hypoperfusion. If the dose to FL is shown to be the determinant of lung toxicity, IMRT would allow for effective dose escalation by specific avoidance of functional lung.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, Emission-Computed, Single-Photon/methods , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/pathology , Neoplasm Staging , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL