Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Cell Physiol ; 237(5): 2539-2549, 2022 05.
Article in English | MEDLINE | ID: mdl-35312066

ABSTRACT

Because mammalian cardiomyocytes largely cease to proliferate immediately after birth, the regenerative activity of the heart is limited. To date, much effort has been made to clarify the regulatory mechanism of cardiomyocyte proliferation because the amplification of cardiomyocytes could be a promising strategy for heart regenerative therapy. Recently, it was reported that the inhibition of glycogen synthase kinase (GSK)-3 promotes the proliferation of neonatal rat cardiomyocytes (NRCMs) and human iPS cell-derived cardiomyocytes (hiPSC-CMs). Additionally, Yes-associated protein (YAP) induces cardiomyocyte proliferation. The purpose of this study was to address the importance of YAP activity in cardiomyocyte proliferation induced by GSK-3 inhibitors (GSK-3Is) to develop a novel strategy for cardiomyocyte amplification. Immunofluorescent microscopic analysis using an anti-Ki-67 antibody demonstrated that the treatment of NRCMs with GSK-3Is, such as BIO and CHIR99021, increased the ratio of proliferative cardiomyocytes. YAP was localized in the nuclei of more than 95% of cardiomyocytes, either in the presence or absence of GSK-3Is, indicating that YAP was endogenously activated. GSK-3Is increased the expression of ß-catenin and promoted its translocation into the nucleus without influencing YAP activity. The knockdown of YAP using siRNA or pharmacological inhibition of YAP using verteporfin or CIL56 dramatically reduced GSK-3I-induced cardiomyocyte proliferation without suppressing ß-catenin activation. Interestingly, the inhibition of GSK-3 also induced the proliferation of hiPSC-CMs under sparse culture conditions, where YAP was constitutively activated. In contrast, under dense culture conditions, in which YAP activity was suppressed, the proliferative effects of GSK-3Is on hiPSC-CMs were not detected. Importantly, the activation of YAP by the knockdown of α-catenin restored the proproliferative activity of GSK-3Is. Collectively, YAP activation potentiates the GSK-3I-induced proliferation of cardiomyocytes. The blockade of GSK-3 in combination with YAP activation resulted in remarkable amplification of cardiomyocytes.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Cell Proliferation , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Induced Pluripotent Stem Cells/metabolism , Mammals/metabolism , Myocytes, Cardiac/metabolism , Rats , YAP-Signaling Proteins , beta Catenin/metabolism
2.
Physiol Rep ; 11(23): e15872, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38040660

ABSTRACT

Though it is well known that mammalian cardiomyocytes exit cell cycle soon after birth, the mechanisms that regulate proliferation remain to be fully elucidated. Recent studies reported that cardiomyocytes undergo dedifferentiation before proliferation, indicating the importance of dedifferentiation in cardiomyocyte proliferation. Since Runx1 is expressed in dedifferentiated cardiomyocytes, Runx1 is widely used as a dedifferentiation marker of cardiomyocytes; however, little is known about the role of Runx1 in the proliferation of cardiomyocytes. The purpose of this study was to clarify the functional significance of Runx1 in cardiomyocyte proliferation. qRT-PCR analysis and immunoblot analysis demonstrated that Runx1 expression was upregulated in neonatal rat cardiomyocytes when cultured in the presence of FBS. Similarly, STAT3 was activated in the presence of FBS. Interestingly, knockdown of STAT3 significantly decreased Runx1 expression, indicating Runx1 is regulated by STAT3. We next investigated the effect of Runx1 on proliferation. Immunofluorescence microscopic analysis using an anti-Ki-67 antibody revealed that knockdown of Runx1 decreased the ratio of proliferating cardiomyocytes. Conversely, Runx1 overexpression using adenovirus vector induced cardiomyocyte proliferation in the absence of FBS. Finally, RNA-sequencing analysis revealed that Runx1 overexpression induced upregulation of cardiac fetal genes and downregulation of genes associated with fatty acid oxidation. Collectively, Runx1 is regulated by STAT3 and induces cardiomyocyte proliferation by juvenilizing cardiomyocytes.


Subject(s)
Mammals , Myocytes, Cardiac , Animals , Rats , Animals, Newborn , Cell Cycle , Cell Proliferation , Cells, Cultured , Myocytes, Cardiac/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL