Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Adv ; 6(30): eaba6884, 2020 07.
Article in English | MEDLINE | ID: mdl-32832666

ABSTRACT

More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Pneumonia, Viral/therapy , Batch Cell Culture Techniques/methods , Bioreactors , COVID-19 , Coronavirus Infections/virology , Graft vs Host Disease/therapy , Humans , Metabolic Engineering/methods , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Transplant Recipients
2.
mSystems ; 4(4)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31186335

ABSTRACT

Engineering synthetic circuits into intestinal bacteria to sense, record, and respond to in vivo signals is a promising new approach for the diagnosis, treatment, and prevention of disease. However, because the design of disease-responsive circuits is limited by a relatively small pool of known biosensors, there is a need for expanding the capacity of engineered bacteria to sense and respond to the host environment. Here, we apply a robust genetic memory circuit in Escherichia coli to identify new bacterial biosensor triggers responding in the healthy and diseased mammalian gut, which may be used to construct diagnostic or therapeutic circuits. We developed a pipeline for rapid systems-level library construction and screening, using next-generation sequencing and computational analysis, which demonstrates remarkably reliable identification of responsive biosensor triggers from pooled libraries. By testing libraries of potential triggers-each consisting of a promoter and ribosome binding site (RBS)-and using RBS variation to augment the range of trigger sensitivity, we identify and validate triggers that selectively activate our synthetic memory circuit during transit through the gut. We further identify biosensor triggers with increased response in the inflamed gut through comparative screening of one of our libraries in healthy mice and those with intestinal inflammation. Our results demonstrate the power of systems-level screening for the identification of novel biosensor triggers in the gut and provide a platform for disease-specific screening that is capable of contributing to both the understanding and clinical management of intestinal illness.IMPORTANCE The gut is a largely obscure and inaccessible environment. The use of live, engineered probiotics to detect and respond to disease signals in vivo represents a new frontier in the management of gut diseases. Engineered probiotics have also shown promise as a novel mechanism for drug delivery. However, the design and construction of effective strains that respond to the in vivo environment is hindered by our limited understanding of bacterial behavior in the gut. Our work expands the pool of environmentally responsive synthetic circuits for the healthy and diseased gut, providing insight into host-microbe interactions and enabling future development of increasingly complex biosensors. This method also provides a framework for rapid prototyping of engineered systems and for application across bacterial strains and disease models, representing a practical step toward the construction of clinically useful synthetic tools.

SELECTION OF CITATIONS
SEARCH DETAIL