Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
J Chem Inf Model ; 64(12): 4811-4821, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38861660

ABSTRACT

Hepatitis C virus (HCV) is a major cause of chronic liver disease and hepatocellular carcinoma. Antibody development efforts mainly revolve around HCV envelope glycoprotein 2 (E2), which mediates host cell entry by interacting with several cell surface receptors, including CD81. We still have limited knowledge about the structural ensembles and the dynamic behavior of both the CD81 binding sites and the glycans on E2. Here, multiple microsecond-long, all-atom molecular dynamics (MD) simulations, as well as a Markov state model (MSM), were performed to provide an atomistic perspective on the dynamic nature of E2 and its glycans. End-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of E2, which may be exploited in therapeutic efforts. Additionally, the Markov state model built from the simulation maps four metastable states for AS412 and three metastable states for the front layer in CD81 binding sites, while binding with HEPC3 would induce a conformation selection for both of them. Overall, this work presents hitherto unseen functional and structural insights into E2 and its glycan coat, providing a new theoretical foundation to control the conformational plasticity of E2 that could be harnessed for vaccine development.


Subject(s)
Molecular Dynamics Simulation , Polysaccharides , Protein Conformation , Viral Envelope Proteins , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Hepacivirus/chemistry , Markov Chains , Humans , Binding Sites
2.
Oral Dis ; 30(7): 4376-4389, 2024 10.
Article in English | MEDLINE | ID: mdl-38148479

ABSTRACT

OBJECTIVES: To explore the role of fibrocytes in the recurrence and calcification of fibrous epulides. METHODS: Different subtypes of fibrous epulides and normal gingival tissue specimens were first collected for histological and immunofluorescence analyses to see if fibrocytes were present and whether they differentiated into myofibroblasts and osteoblasts upon stimulated by transforming growth factor-ß1 (TGF-ß1). Electron microscopy and elemental analysis were used to characterize the extracellular microenvironment in different subtypes of fibrous epulides. Human peripheral blood mononuclear cells (PBMCs) were subsequently isolated from in vitro models to mimic the microenvironment in fibrous epulides to identify whether TGF-ß1 as well as the calcium and phosphorus ion concentration in the extracellular matrix (ECM) of a fibrous epulis trigger fibrocyte differentiation. RESULTS: Fibrous epulides contain fibrocytes that accumulate in the local inflammatory environment and have the ability to differentiate into myofibroblasts or osteoblasts. TGF-ß1 promotes fibrocytes differentiation into myofibroblasts in a concentration-dependent manner, while TGF-ß1 stimulates the fibrocytes to differentiate into osteoblasts when combined with a high calcium and phosphorus environment. CONCLUSIONS: Our study revealed fibrocytes play an important role in the fibrogenesis and osteogenesis in fibrous epulis, and might serve as a therapeutic target for the inhibition of recurrence of fibrous epulides.


Subject(s)
Cell Differentiation , Myofibroblasts , Osteoblasts , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Myofibroblasts/pathology , Osteoblasts/pathology , Calcium/metabolism , Gingiva/pathology , Gingiva/cytology , Gingival Diseases/pathology , Phosphorus/analysis , Fibroblasts/pathology , Cells, Cultured , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Leukocytes, Mononuclear/pathology , Osteogenesis
3.
Nat Mater ; 16(3): 370-378, 2017 03.
Article in English | MEDLINE | ID: mdl-27820813

ABSTRACT

Mineralization of fibrillar collagen with biomimetic process-directing agents has enabled scientists to gain insight into the potential mechanisms involved in intrafibrillar mineralization. Here, by using polycation- and polyanion-directed intrafibrillar mineralization, we challenge the popular paradigm that electrostatic attraction is solely responsible for polyelectrolyte-directed intrafibrillar mineralization. As there is no difference when a polycationic or a polyanionic electrolyte is used to direct collagen mineralization, we argue that additional types of long-range non-electrostatic interaction are responsible for intrafibrillar mineralization. Molecular dynamics simulations of collagen structures in the presence of extrafibrillar polyelectrolytes show that the outward movement of ions and intrafibrillar water through the collagen surface occurs irrespective of the charges of polyelectrolytes, resulting in the experimentally verifiable contraction of the collagen structures. The need to balance electroneutrality and osmotic equilibrium simultaneously to establish Gibbs-Donnan equilibrium in a polyelectrolyte-directed mineralization system establishes a new model for collagen intrafibrillar mineralization that supplements existing collagen mineralization mechanisms.


Subject(s)
Fibrillar Collagens/chemistry , Fibrillar Collagens/ultrastructure , Minerals/chemistry , Molecular Dynamics Simulation , Osmotic Pressure , Static Electricity , Computer Simulation , Electrolytes/chemistry
4.
Prog Polym Sci ; 71: 53-90, 2017 Aug.
Article in English | MEDLINE | ID: mdl-32287485

ABSTRACT

Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.

5.
Adv Funct Mater ; 24(13): 1895-1903, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-25477773

ABSTRACT

In this paper, we report a process for generating collagen-yttria-stabilized amorphous zirconia hybrid scaffolds by introducing acetylacetone-inhibited zirconia precursor nanodroplets into a poly(allylamine)-coated collagen matrix. This polyelectrolyte coating triggers intrafibrillar condensation of the precursors into amorphous zirconia, which is subsequently transformed into tetragonal yttria-stabilized zirconia after calcination. Our findings represent a new paradigm in the synthesis of non-naturally occurring collagen-based hybrid scaffolds under alcoholic mineralizing conditions.

6.
J Adhes Dent ; 16(5): 429-34, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25264547

ABSTRACT

PURPOSE: To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. MATERIALS AND METHODS: Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). RESULTS: When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. CONCLUSION: Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.


Subject(s)
Dental Bonding/methods , Dental Leakage/prevention & control , Dentin-Bonding Agents/chemistry , Dentin/ultrastructure , Acid Etching, Dental/methods , Air , Composite Resins/chemistry , Dental Cements/chemistry , Dental Materials/chemistry , Dental Pulp/physiology , Feasibility Studies , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phosphoric Acids/chemistry , Silver Staining , Surface Properties , Temperature , Time Factors , Water/chemistry
7.
Adv Sci (Weinh) ; 11(28): e2400790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38741381

ABSTRACT

Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.


Subject(s)
Autophagy , Disease Models, Animal , Lysosomes , Mice, Transgenic , Ossification, Heterotopic , Tendons , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Animals , Autophagy/physiology , Mice , Lysosomes/metabolism , Tendons/metabolism , Tendons/pathology , Tendons/physiopathology , Tenotomy/methods , Male , Tendon Injuries/physiopathology , Tendon Injuries/metabolism , Tendon Injuries/pathology , Mice, Inbred C57BL
8.
NPJ Biofilms Microbiomes ; 10(1): 56, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003275

ABSTRACT

Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.


Subject(s)
Biofilms , Dental Calculus , Dental Calculus/microbiology , Dental Calculus/prevention & control , Humans , Animals , Biofilms/growth & development , Bacteria/classification , Oral Health , Mouth/microbiology , Calcium/metabolism , Phosphorus/metabolism
9.
Nat Biomed Eng ; 8(9): 1177-1190, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38491329

ABSTRACT

Dental calculi can cause gingival bleeding and periodontitis, yet the mechanism underlying the formation of such mineral build-ups, and in particular the role of the local microenvironment, are unclear. Here we show that the formation of dental calculi involves bacteria in local mature biofilms converting the DNA in neutrophil extracellular traps (NETs) from being degradable by the enzyme DNase I to being degradation resistant, promoting the nucleation and growth of apatite. DNase I inhibited NET-induced mineralization in vitro and ex vivo, yet plasma DNases were ineffective at inhibiting ectopic mineralization in the oral cavity in rodents. The topical application of the DNA-intercalating agent chloroquine in rodents fed with a dental calculogenic diet reverted NET DNA to its degradable form, inhibiting the formation of calculi. Our findings may motivate therapeutic strategies for the reduction of the prevalence of the deposition of bacteria-driven calculi in the oral cavity.


Subject(s)
Biofilms , Dental Calculus , Deoxyribonuclease I , Extracellular Traps , Neutrophils , Extracellular Traps/metabolism , Animals , Dental Calculus/metabolism , Biofilms/growth & development , Neutrophils/metabolism , Humans , Deoxyribonuclease I/metabolism , Mice , Bacteria/metabolism , Rats , Male
10.
Adv Mater ; 36(16): e2311659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175183

ABSTRACT

Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.


Subject(s)
Biomimetics , Calcium Phosphates , Dental Caries , Humans , RNA , Ribonucleases , Dental Enamel
11.
FASEB J ; 26(11): 4517-29, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22859369

ABSTRACT

Traditional bone regeneration strategies relied on supplementation of biomaterials constructs with stem or progenitor cells or growth factors. By contrast, cell homing strategies employ chemokines to mobilize stem or progenitor cells from host bone marrow and tissue niches to injured sites. Although silica-based biomaterials exhibit osteogenic and angiogenic potentials, they lack cell homing capability. Stromal cell-derived factor-1 (SDF-1) plays a pivotal role in mobilization and homing of stem cells to injured tissues. In this work, we demonstrated that 3-dimensional collagen scaffolds infiltrated with intrafibrillar silica are biodegradable and highly biocompatible. They exhibit improved compressive stress-strain responses and toughness over nonsilicified collagen scaffolds. They are osteoconductive and up-regulate expressions of osteogenesis- and angiogenesis-related genes more significantly than nonsilicified collagen scaffolds. In addition, these scaffolds reversibly bind SDF-1α for sustained release of this chemokine, which exhibits in vitro cell homing characteristics. When implanted subcutaneously in an in vivo mouse model, SDF-1α-loaded silicified collagen scaffolds stimulate the formation of ectopic bone and blood capillaries within the scaffold and abrogate the need for cell seeding or supplementation of osteogenic and angiogenic growth factors. Intrafibrillar-silicified collagen scaffolds with sustained SDF-1α release represent a less costly and complex alternative to contemporary cell seeding approaches and provide new therapeutic options for in situ hard tissue regeneration.


Subject(s)
Bone Regeneration , Chemokine CXCL12/metabolism , Collagen/metabolism , Guided Tissue Regeneration/methods , Silicic Acid/chemistry , Tissue Scaffolds , Animals , Biocompatible Materials , Biomechanical Phenomena , Cell Survival , Chemokine CXCL12/genetics , Gene Expression Regulation/physiology , Humans , Materials Testing , Mice , Osteogenesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/physiology
12.
Biomacromolecules ; 14(5): 1661-8, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23586938

ABSTRACT

Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and bovine bone may be replaced by amorphous silica, using an approach that simulates what is utilized by phylogenetically ancient glass sponges. The structural hierarchy of these collagen-based biomaterials is replicated by the infiltration and condensation of fluidic polymer-stabilized silicic acid precursors within the intrafibrillar milieu of type I collagen fibrils. This facile biomimetic silicification strategy may be used for fabricating silica-based, three-dimensional functional materials with specific morphological and hierarchical requirements.


Subject(s)
Apatites/chemistry , Biomimetic Materials/chemistry , Collagen Type I/chemistry , Silicic Acid/chemistry , Silicon Dioxide/chemistry , Animals , Bone and Bones/chemistry , Carps , Cattle , Polyamines/chemistry , Porifera/chemistry
13.
Chin J Dent Res ; 26(2): 113-117, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37395523

ABSTRACT

Implant-retained removable partial dentures (RPDs) are commonly used to resolve the complications associated with traditional distal extension RPDs; however, this technology does not consider the necessity and importance of parallelism between the path of RPD insertion and the long axis of the implant. This clinical report presents a novel digital preparation technique that involves the preparation of parallel guiding planes on abutment teeth and implant insertion in the distal extension area using a computer-aided design and manufacturing template. This clinical case of implant-retained RPDs illustrates the fabrication and application of the digital template. Using this technique, the path of RPD insertion is parallel to the long axis of the implant. As a result, the components of the implant-retained RPD, including the abutment teeth, implants and attachments, can demonstrate greater longevity.


Subject(s)
Denture, Partial, Removable , Tooth , Humans , Face , Computer-Aided Design , Technology
14.
Bioact Mater ; 27: 348-361, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37180640

ABSTRACT

Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.

15.
Biomaterials ; 296: 122066, 2023 05.
Article in English | MEDLINE | ID: mdl-36842238

ABSTRACT

Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.


Subject(s)
Artificial Intelligence , Osteoporosis , Humans , Osteoporosis/drug therapy , Biocompatible Materials/therapeutic use , Tissue Engineering/methods , Bone and Bones , Hydrogels/therapeutic use , Printing, Three-Dimensional
16.
Front Bioeng Biotechnol ; 11: 1138601, 2023.
Article in English | MEDLINE | ID: mdl-36949886

ABSTRACT

Introduction: Sensory nerves and vessels are critical for skeletal development and regeneration, but crosstalk between neurovascular network and mineralization are not clear. The aim of this study was to explore neurovascular changes and identify bioactive regulators during in situ osteogenesis. Method: In situ osteogenesis model was performed in male rats following Achilles tenotomy. At 3, 6 and 9 weeks after surgery, mineralization, blood vessels, sensory innervation, and bioactive regulators expression were evaluated via micro-computed tomography, immunofluorescent staining, histology and reverse transcriptase-polymerase chain reaction analyses. Result: In the process of in situ osteogenesis, the mineral density increased with time, and the locations of minerals, nerves and blood vessels were highly correlated at each time point. The highest density of sensory nerve was observed in the experimental group at the 3rd week, and then gradually decreased with time, but still higher than that in the sham control group. Among many regulatory factors, semaphorin 3A (Sema3A) was highly expressed in experimental model and its expression was temporally sequential and spatially correlated sensory nerve. Conclusion: The present study showes that during in situ osteogenesis, innervation and angiogenesis are highly correlated, and Sema3A is associated with the position and expression of the sensory nerve.

17.
Fundam Res ; 3(6): 1025-1038, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38933004

ABSTRACT

Ectopic mineralization refers to the deposition of mineralized complexes in the extracellular matrix of soft tissues. Calcific aortic valve disease, vascular calcification, gallstones, kidney stones, and abnormal mineralization in arthritis are common examples of ectopic mineralization. They are debilitating diseases and exhibit excess mortality, disability, and morbidity, which impose on patients with limited social or financial resources. Recent recognition that inflammation plays an important role in ectopic mineralization has attracted the attention of scientists from different research fields. In the present review, we summarize the origin of inflammation in ectopic mineralization and different channels whereby inflammation drives the initiation and progression of ectopic mineralization. The current knowledge of inflammatory milieu in pathological mineralization is reviewed, including how immune cells, pro-inflammatory mediators, and osteogenic signaling pathways induce the osteogenic transition of connective tissue cells, providing nucleating sites and assembly of aberrant minerals. Advances in the understanding of the underlying mechanisms involved in inflammatory-mediated ectopic mineralization enable novel strategies to be developed that may lead to the resolution of these enervating conditions.

18.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Article in English | MEDLINE | ID: mdl-37395388

ABSTRACT

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Subject(s)
Osteoarthritis , Vascular Endothelial Growth Factor A , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Molecular Docking Simulation , Osteoarthritis/metabolism , RNA/genetics
19.
Acta Biomater ; 157: 639-654, 2023 02.
Article in English | MEDLINE | ID: mdl-36509401

ABSTRACT

Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-ß1 (TGF-ß1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1ß (IL-1ß)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.


Subject(s)
Oral Submucous Fibrosis , Rats , Animals , Oral Submucous Fibrosis/drug therapy , Oral Submucous Fibrosis/chemically induced , Oral Submucous Fibrosis/metabolism , Mouth Mucosa , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Hydrogels/metabolism , Collagen/pharmacology , Collagen/metabolism
20.
ACS Biomater Sci Eng ; 9(4): 1733-1756, 2023 04 10.
Article in English | MEDLINE | ID: mdl-34436861

ABSTRACT

Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.


Subject(s)
Odontoblasts , Tooth , Humans , Calcification, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL