Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Nano Lett ; 23(6): 2332-2338, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36897107

ABSTRACT

Two-dimensional (2D) materials with intrinsic room-temperature ferromagnetism have gathered tremendous interest as promising candidates for next-generation spintronics. Here, on the basis of first-principles calculations, we report a family of stable 2D iron silicide (FeSix) alloys via dimensional reduction of their bulk counterparts. Our results demonstrate that 2D Fe4Si2-hex, Fe4Si2-orth, Fe3Si2, and FeSi2 nanosheets are lattice-dynamically and thermally stable, confirmed by the calculated phonon spectra and Born-Oppenheimer dynamic simulation up to 1000 K. 2D FeSix nanosheets are ferromagnetic metals with estimated Curie temperatures ranging from 547 to 971 K due to strong direct exchange interaction between Fe sites. In addition, the electronic properties of 2D FeSix alloys can be maintained on silicon substrates, providing an ideal platform for spintronics applications in the nanoscale.

2.
Phys Rev Lett ; 128(16): 167402, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35522488

ABSTRACT

The strong coupling between excitons and single plasmonic nanocavities enables plexcitonic states in nanoscale systems at room temperature. Here we demonstrate the strong coupling of surface plasmon modes of metal nanowires and excitons in monolayer semiconductors, with Rabi splitting manifested in both scattering and photoluminescence (PL) spectra. By utilizing the propagation properties of surface plasmons on the nanowires, the PL emitted through the scattering of plasmon-exciton hybrid modes is extracted. The analytically calculated scattering and PL spectra well reproduce the experimental results. These findings unify the scattering and PL spectra in the plexcitonic system and eliminate the ambiguities of PL emission, shedding new light on understanding the rich spectral phenomena in the plasmon-exciton strong coupling regime.

3.
Nano Lett ; 21(16): 7050-7055, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34355913

ABSTRACT

Uncovering the physics behind the electrical manipulation of low-dimensional magnetic materials remains a fundamental issue in practical application of nanoscale spintronics. Here, we propose a strategy to transform A-type antiferromagnetic (AFM) semiconductors into asymmetric AFM unipolar or bipolar magnetic semiconductors by applying perpendicular electric fields in van der Waals bilayer systems. Electric fields lifting energy levels of electrons within same spin channel from consistent layers in opposite direction enables unipolar magnetic semiconductor, whereas electrons within opposite spin channel enable bipolar magnetic semiconductor. A comprehensive study demonstrates this discrepancy originates from spatial distributions of spin density of valence band and conduction band edges in two layers of systems. The electric field induced unipolar or bipolar magnetic semiconducting behavior represents great potential of nanoscale AFM spintronics for information storage and processing.

4.
J Am Chem Soc ; 142(19): 8818-8826, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32310653

ABSTRACT

Lithium metal batteries are vital devices for high-energy-density energy storage, but the Li metal anode is highly reactive with electrolyte and forms uncontrolled dendrite that can cause undesirable parasitic reactions and, thus, poor cycling stability and raise safety concerns. Despite remarkable progress to partially solve these issues, the Li metal still plates at the electrode/electrolyte interface where the parasitic reactions and dendrite formation invariably occur. Here, we demonstrate the inward-growth plating of Li atoms into a metal foil of thickness of tens of micrometers while avoiding surface deposition, which is driven by the reversible solid-solution-based alloy phase change. Lithiation of the solid-solution alloy phase allows the freshly generated Li atoms at the surface to sink into the metal foil, while the reversible alloy phase change is companied by the dealloying reaction during delithiation, which extracts Li atoms from inside of the metal foil. The yielded dendrite free Li anode produces an enhanced Coulombic efficiency of 99.5 ± 0.2% with a reversible capacity of 1660 mA h g-1 (3.3 mA h cm-2).

5.
J Org Chem ; 84(17): 10805-10813, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31418570

ABSTRACT

In this work, selectivity-controllable base-promoted transition-metal-free borylation and dehalogenation of aryl halides are described. Under the conditions of borylation, the dehalogenation which emerges as a competitive side reaction has been well-controlled by carefully controlling the borylation conditions. On the other hand, the dehalogenation using benzaldehyde as a hydrogen source has also been accomplished. The applications of direct radical borylation and dehalogenation of aryl halides demonstrate their synthetic practicability in pharmaceutical-oriented organic synthesis. Based on the experimental evidences, the tBuOK/1,10-Phen-triggered radical nature of both competitive reactions has been revealed.

6.
J Am Chem Soc ; 139(42): 14917-14930, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29039669

ABSTRACT

In recent years, triazolylidene carbenes have come to the forefront as important organocatalysts for a wide range of reactions. The fundamental properties of these species, however, remain largely unknown. Herein, the gas phase acidities have been measured and calculated for a series of triazolium cations (the conjugate acids of the triazolylidene carbenes) that have not been heretofore examined in vacuo. The results are discussed in the context of these species as catalysts. We find correlations between the gas phase acidity and selectivity in two Umpolung reactions catalyzed by these species; such correlations are the first of their kind. We are able to use these linear correlations to improve reaction enantioselectivity. These results establish the possibility of using these thermochemical properties to predict reactivity in related transformations.


Subject(s)
Acids/chemistry , Electrons , Gases/chemistry , Methane/analogs & derivatives , Catalysis , Cations/chemistry , Methane/chemistry , Pyrrolidines/chemistry , Triazoles/chemistry
7.
J Comput Aided Mol Des ; 29(4): 315-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25726024

ABSTRACT

The binding energy distribution analysis method (BEDAM) protocol has been employed as part of the SAMPL4 blind challenge to predict the binding free energies of a set of octa-acid host-guest complexes. The resulting predictions were consistently judged as some of the most accurate predictions in this category of the SAMPL4 challenge in terms of quantitative accuracy and statistical correlation relative to the experimental values, which were not known at the time the predictions were made. The work has been conducted as part of a hands-on graduate class laboratory session. Collectively the students, aided by automated setup and analysis tools, performed the bulk of the calculations and the numerical and structural analysis. The success of the experiment confirms the reliability of the BEDAM methodology and it shows that physics-based atomistic binding free energy estimation models, when properly streamlined and automated, can be successfully employed by non-specialists.


Subject(s)
Drug Discovery , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , Software , Thermodynamics , Binding Sites , Drug Discovery/methods , HIV/enzymology , HIV Infections/drug therapy , HIV Integrase/metabolism , Humans , Models, Molecular
8.
J Phys Chem Lett ; 14(17): 4042-4049, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37093651

ABSTRACT

Two-dimensional (2D) antiferromagnets have drawn great interest for absence of stray fields in antiferromagnetic (AFM) spintronics. However, it remains challenging to manipulate their spin polarization above room temperature for practical applications. Herein, a general strategy is reported to realize the control of spin polarization above room temperature in 2D A-type AFM semiconductors by external electric field based on first-principles calculations, exemplified by transition metal monohalide MnCl and carbide MXenes Cr2CX2 (X = F, Cl, OH). It shows that 100% spin polarization can be induced around Fermi level with spin splitting gap related to the spatial distribution of spin density in real space. Meanwhile, the Neél temperature of 2D MnCl and Cr2CF2 remains above room temperature under external electric field up to 0.6 V/Å. This study exhibits the potential for application of 2D AFM semiconductors in electric-field-controlled spintronics.

9.
Micromachines (Basel) ; 14(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36677221

ABSTRACT

Precise trap and manipulation of individual cells is a prerequisite for single-cell analysis, which has a wide range of applications in biology, chemistry, medicine, and materials. Herein, a microfluidic trapping system with a 3D electrode based on AC dielectrophoresis (DEP) technology is proposed, which can achieve the precise trapping and release of specific microparticles. The 3D electrode consists of four rectangular stereoscopic electrodes with an acute angle near the trapping chamber. It is made of Ag-PDMS material, and is the same height as the channel, which ensures the uniform DEP force will be received in the whole channel space, ensuring a better trapping effect can be achieved. The numerical simulation was conducted in terms of electrode height, angle, and channel width. Based on the simulation results, an optimal chip structure was obtained. Then, the polystyrene particles with different diameters were used as the samples to verify the effectiveness of the designed trapping system. The findings of this research will contribute to the application of cell trapping and manipulation, as well as single-cell analysis.

10.
Chem Sci ; 10(34): 8002-8008, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31853355

ABSTRACT

Herein, gas phase studies of the kinetic hydricity of a series of silane hydrides are described. An understanding of hydricity is important as hydride reactions figure largely in many processes, including organic synthesis, photoelectrocatalysis, and hydrogen activation. We find that hydricity trends in the gas phase differ from those in solution, revealing the effect of solvent. Calculations and further experiments, including H/D studies, were used to delve into the reactivity and structure of the reactants. These studies also represent a first step toward systematically understanding nucleophilicity and electrophilicity in the absence of solvent.

SELECTION OF CITATIONS
SEARCH DETAIL