Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 579(7800): 518-522, 2020 03.
Article in English | MEDLINE | ID: mdl-32214245

ABSTRACT

Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.

2.
Nature ; 434(7037): 1110-1, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-15858568

ABSTRACT

The massive flare of 27 December 2004 from the soft gamma-ray repeater SGR 1806-20, a possible magnetar, saturated almost all gamma-ray detectors, meaning that the profile of the pulse was poorly characterized. An accurate profile is essential to determine physically what was happening at the source. Here we report the unsaturated gamma-ray profile for the first 600 ms of the flare, with a time resolution of 5.48 ms. The peak of the profile (of the order of 10(7) photons cm(-2) s(-1)) was reached approximately 50 ms after the onset of the flare, and was then followed by a gradual decrease with superposed oscillatory modulations possibly representing repeated energy injections with approximately 60-ms intervals. The implied total energy is comparable to the stored magnetic energy in a magnetar (approximately 10(47) erg) based on the dipole magnetic field intensity (approximately 10(15) G), suggesting either that the energy release mechanism was extremely efficient or that the interior magnetic field is much stronger than the external dipole field.

3.
Science ; 323(5916): 900-5, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19213911

ABSTRACT

The farside gravity field of the Moon is improved from the tracking data of the Selenological and Engineering Explorer (SELENE) via a relay subsatellite. The new gravity field model reveals that the farside has negative anomaly rings unlike positive anomalies on the nearside. Several basins have large central gravity highs, likely due to super-isostatic, dynamic uplift of the mantle. Other basins with highs are associated with mare fill, implying basalt eruption facilitated by developed faults. Basin topography and mantle uplift on the farside are supported by a rigid lithosphere, whereas basins on the nearside deformed substantially with eruption. Variable styles of compensation on the near- and farsides suggest that reheating and weakening of the lithosphere on the nearside was more extensive than previously considered.

SELECTION OF CITATIONS
SEARCH DETAIL