Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Cell ; 82(3): 645-659.e9, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051350

ABSTRACT

Pseudouridine is a modified nucleotide that is prevalent in human mRNAs and is dynamically regulated. Here, we investigate when in their life cycle mRNAs become pseudouridylated to illuminate the potential regulatory functions of endogenous mRNA pseudouridylation. Using single-nucleotide resolution pseudouridine profiling on chromatin-associated RNA from human cells, we identified pseudouridines in nascent pre-mRNA at locations associated with alternatively spliced regions, enriched near splice sites, and overlapping hundreds of binding sites for RNA-binding proteins. In vitro splicing assays establish a direct effect of individual endogenous pre-mRNA pseudouridines on splicing efficiency. We validate hundreds of pre-mRNA sites as direct targets of distinct pseudouridine synthases and show that PUS1, PUS7, and RPUSD4-three pre-mRNA-modifying pseudouridine synthases with tissue-specific expression-control widespread changes in alternative pre-mRNA splicing and 3' end processing. Our results establish a vast potential for cotranscriptional pre-mRNA pseudouridylation to regulate human gene expression via alternative pre-mRNA processing.


Subject(s)
Alternative Splicing , Intramolecular Transferases/metabolism , RNA 3' End Processing , RNA Precursors/metabolism , RNA, Messenger/metabolism , Transcription, Genetic , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , Hep G2 Cells , Humans , Intramolecular Transferases/genetics , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , RNA Precursors/genetics , RNA, Messenger/genetics
2.
Mol Cell ; 81(15): 3048-3064.e9, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216543

ABSTRACT

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cell Death/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Mice, Nude , Mice, Transgenic , Protein Biosynthesis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
3.
Mol Cell ; 73(2): 304-313.e3, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30527666

ABSTRACT

LIN28 RNA binding proteins are dynamically expressed throughout mammalian development and during disease. However, it remains unclear how changes in LIN28 expression define patterns of post-transcriptional gene regulation. Here we show that LIN28 expression level is a key variable that sets the magnitude of protein translation. By systematically varying LIN28B protein levels in human cells, we discovered a dose-dependent divergence in transcriptome-wide ribosome occupancy that enabled the formation of two discrete translational subpopulations composed of nearly all expressed genes. This bifurcation in gene expression was mediated by a redistribution in Argonaute association, from let-7 to non-let-7 microRNA families, resulting in a global shift in cellular miRNA activity. Post-transcriptional effects were scaled across the physiological LIN28 expression range. Together, these data highlight the central importance of RBP expression level and its ability to encode regulation.


Subject(s)
Protein Biosynthesis , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Transcriptome , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Binding Sites , Binding, Competitive , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , NIH 3T3 Cells , Protein Binding , RNA-Binding Proteins/genetics , Ribosomes/genetics
4.
Mol Cell ; 69(6): 1005-1016.e7, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29547715

ABSTRACT

RNA binding proteins (RBPs) interact with primary, precursor, and mature microRNAs (miRs) to influence mature miR levels, which in turn affect critical aspects of human development and disease. To understand how RBPs contribute to miR biogenesis, we analyzed human enhanced UV crosslinking followed by immunoprecipitation (eCLIP) datasets for 126 RBPs to discover miR-encoding genomic loci that are statistically enriched for RBP binding. We find that 92% of RBPs interact directly with at least one miR locus, and that some interactions are cell line specific despite expression of the miR locus in both cell lines evaluated. We validated that ILF3 and BUD13 directly interact with and stabilize miR-144 and that BUD13 suppresses mir-210 processing to the mature species. We also observed that DDX3X regulates primary miR-20a, while LARP4 stabilizes precursor mir-210. Our approach to identifying regulators of miR loci can be applied to any user-defined RNA annotation, thereby guiding the discovery of uncharacterized regulators of RNA processing.


Subject(s)
Computational Biology/methods , Data Mining/methods , Databases, Genetic , MicroRNAs/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , Binding Sites , HEK293 Cells , Hep G2 Cells , Humans , K562 Cells , MicroRNAs/genetics , Protein Binding , RNA Interference , RNA Precursors/genetics , RNA Stability , RNA-Binding Proteins/genetics
5.
Adv Exp Med Biol ; 907: 61-88, 2016.
Article in English | MEDLINE | ID: mdl-27256382

ABSTRACT

Dynamic regulation of RNA molecules is critical to the survival and development of cells. Messenger RNAs are transcribed in the nucleus as intron-containing pre-mRNAs and bound by RNA-binding proteins, which control their fate by regulating RNA stability, splicing, polyadenylation, translation, and cellular localization. Most RBPs have distinct mRNA-binding and functional domains; thus, the function of an RBP can be studied independently of RNA-binding by artificially recruiting the RBP to a reporter RNA and then measuring the effect of RBP recruitment on reporter splicing, stability, translational efficiency, or intracellular trafficking. These tethered function assays therefore do not require prior knowledge of the RBP's endogenous RNA targets or its binding sites within these RNAs. Here, we provide an overview of the experimental strategy and the strengths and limitations of common tethering systems. We illustrate specific examples of the application of the assay in elucidating the function of various classes of RBPs. We also discuss how classic tethering assay approaches and insights gained from them have been empowered by more recent technological advances, including efficient genome editing and high-throughput RNA-sequencing.


Subject(s)
RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , Animals , Bacteriophages/metabolism , Binding Sites , Biological Transport , Humans , Mice , Nucleic Acid Conformation , Poly(A)-Binding Proteins/metabolism , Protein Binding , Protein Biosynthesis , RNA/metabolism , RNA Processing, Post-Transcriptional , RNA Stability , RNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
6.
Blood ; 120(8): 1742-51, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22791291

ABSTRACT

Neutrophil recruitment and extravasation at sites of inflammation provide a mechanism for host defense. We showed previously that heparan sulfate, a type of sulfated glycosaminoglycan, facilitates neutrophil recruitment based on the reduction of neutrophil infiltration in mice in which the overall sulfation of the chains was reduced by selective inactivation of N-acetylglucosamine N-deacetylase-N-sulfotransferase (Ndst1) in endothelial cells. Here we show that inactivation of uronyl 2-O-sulfotransferase in endothelial cells (Hs2st), an enzyme that acts downstream from Ndst1, results in enhanced neutrophil recruitment in several models of acute inflammation. Enhanced neutrophil infiltration resulted in part from reduced rolling velocity under flow both in vivo and in vitro, which correlated with stronger binding of neutrophil L-selectin to mutant endothelial cells. Hs2st-deficient endothelial cells also displayed a striking increase in binding of IL-8 and macrophage inflammatory protein-2. The enhanced binding of these mediators of neutrophil recruitment resulted from a change in heparan sulfate structure caused by increased N-sulfation and 6-O-sulfation of glucosamine units in response to the decrease in 2-O-sulfation of uronic acid residues. This gain-of-function phenotype provides formidable evidence demonstrating the importance of endothelial heparan sulfate in inflammation and suggests a novel enzyme target for enhancing the innate immune response.


Subject(s)
Gene Silencing , Neutrophil Infiltration , Neutrophils/immunology , Peritonitis/immunology , Sulfotransferases/genetics , Sulfotransferases/immunology , Animals , Cells, Cultured , Chemokines/immunology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/immunology , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , L-Selectin/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Peritonitis/chemically induced , Peritonitis/genetics , Thioglycolates
7.
Neuron ; 102(2): 294-320, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30998900

ABSTRACT

RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.


Subject(s)
Nervous System Diseases/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Animals , Autophagy , CRISPR-Cas Systems , Genetic Therapy , Genetic Vectors , Homeostasis , Humans , Molecular Targeted Therapy , Nervous System Diseases/genetics , Nervous System Diseases/therapy , Oligoribonucleotides, Antisense/therapeutic use , Paraneoplastic Syndromes, Nervous System/genetics , Paraneoplastic Syndromes, Nervous System/metabolism , Paraneoplastic Syndromes, Nervous System/therapy , RNA Processing, Post-Transcriptional , RNA Splicing , RNA Stability , RNA Transport
8.
Sci Signal ; 10(482)2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28588081

ABSTRACT

Increased protein translation in cells and various factors in the tumor microenvironment can induce endoplasmic reticulum (ER) stress, which initiates the unfolded protein response (UPR). We have previously reported that factors released from cancer cells mounting a UPR induce a de novo UPR in bone marrow-derived myeloid cells, macrophages, and dendritic cells that facilitates protumorigenic characteristics in culture and tumor growth in vivo. We investigated whether this intercellular signaling, which we have termed transmissible ER stress (TERS), also operates between cancer cells and what its functional consequences were within the tumor. We found that TERS signaling induced a UPR in recipient human prostate cancer cells that included the cell surface expression of the chaperone GRP78. TERS also activated Wnt signaling in recipient cancer cells and enhanced resistance to nutrient starvation and common chemotherapies such as the proteasome inhibitor bortezomib and the microtubule inhibitor paclitaxel. TERS-induced activation of Wnt signaling required the UPR kinase and endonuclease IRE1. However, TERS-induced enhancement of cell survival was predominantly mediated by the UPR kinase PERK and a reduction in the abundance of the transcription factor ATF4, which prevented the activation of the transcription factor CHOP and, consequently, the induction of apoptosis. When implanted in mice, TERS-primed cancer cells gave rise to faster growing tumors than did vehicle-primed cancer cells. Collectively, our data demonstrate that TERS is a mechanism of intercellular communication through which tumor cells can adapt to stressful environments.


Subject(s)
Bortezomib/pharmacology , Cell Survival/drug effects , Drug Resistance , Endoplasmic Reticulum Stress/drug effects , Paclitaxel/pharmacology , Prostatic Neoplasms/pathology , Unfolded Protein Response/drug effects , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Antineoplastic Agents/pharmacology , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Tubulin Modulators/pharmacology , Tumor Cells, Cultured , Wnt Proteins/genetics , Wnt Proteins/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
9.
Neuron ; 92(4): 780-795, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27773581

ABSTRACT

HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.


Subject(s)
Alternative Splicing/genetics , Amyotrophic Lateral Sclerosis/genetics , Cell Survival/genetics , Fibroblasts/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Motor Neurons/metabolism , Protein Transport/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Case-Control Studies , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/metabolism , Fluorescent Antibody Technique , Gene Expression , Gene Expression Profiling , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Humans , Induced Pluripotent Stem Cells , Mice , Mutation , Polyadenylation
10.
Trends Neurosci ; 38(4): 226-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25765321

ABSTRACT

As critical players in gene regulation, RNA binding proteins (RBPs) are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing (Seq) methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and enable us to determine the widespread influence of the multifunctional RBPs on their targets. Given that the disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RBPs in disease pathogenesis.


Subject(s)
Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , High-Throughput Nucleotide Sequencing , Humans , RNA Processing, Post-Transcriptional
SELECTION OF CITATIONS
SEARCH DETAIL