Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Neurochem Res ; 43(1): 166-179, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28861673

ABSTRACT

Astrocytes contribute to the death of motor neurons via non-cell autonomous mechanisms of injury in amyotrophic lateral sclerosis (ALS). Since mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) underlie the neuropathology of some forms of familial ALS, we explored how expression of mutant SOD1 protein A4V SOD1-EGFP affected the biology of secondary murine astrocytes. A4V SOD1-EGFP expressing astrocytes (72 h after transfection) displayed decreased mitochondrial activity (~45%) and L-glutamate transport (~25%), relative to cells expressing wild-type SOD1-EGFP. A4V SOD1-EGFP altered F-actin and Hoechst staining, indicative of cytoskeletal and nuclear changes, and altered GM130 labelling suggesting fragmentation of Golgi apparatus. SOD1 inclusion formation shifted from discrete to "punctate" over 72 h with A4V SOD1-EGFP more rapidly producing inclusions than G85R SOD1-EGFP, and forming more punctate aggregates. A4V, not wild-type SOD1-EGFP, exerted a substantial, time-dependent effect on GFAP expression, and ~60% of astrocytes became stellate and hypertrophic at 72 h. Spreading toxicity was inferred since at 72 h ~80% of bystander cells exhibited hypertrophy and stellation. This evidence favours mutant SOD1-containing astrocytes releasing destructive species that alter the biology of adjacent astrocytes. This panoply of mutant SOD1-induced destructive events favours recruitment of astrocytes to non-cell autonomous injury in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Astrocytes/drug effects , Mitochondria/metabolism , Motor Neurons/cytology , Superoxide Dismutase-1/genetics , Animals , Astrocytes/metabolism , Mice, Inbred C57BL , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
2.
J Cell Physiol ; 227(3): 1199-211, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21604263

ABSTRACT

Inhibitors of Rho kinase (ROCK) have potential for management of neurological disorders by inhibition of glial scarring. Since astrocytes play key roles in brain physiology and pathology, we determined changes in the astrocytic transcriptome produced by the ROCK inhibitor Fasudil to obtain mechanistic insights into its beneficial action during brain injury. Cultured murine astrocytes were treated with Fasudil (100 µM) and morphological analyses revealed rapid stellation by 1 h and time-dependent (2-24 h) dissipation of F-actin-labelled stress fibres. Microarray analyses were performed on RNA and the time-course of global gene profiling (2, 6, 12 and 24 h) provided a comprehensive description of transcriptomic changes. Hierarchical clustering of differentially expressed genes and analysis for over-represented gene ontology groups using the DAVID database focused attention on Fasudil-induced changes to major biological processes regulating cellular shape and motility (actin cytoskeleton, axon guidance, transforming growth factor-ß (TGFß) signalling and tight junctions). Bioinformatic analyses of transcriptomic changes revealed how these biological processes contributed to changes in astrocytic motility and cytoskeletal reorganisation. Here genes associated with extracellular matrix were also involved, but unexpected was a subset of alterations (EAAT2, BDNF, anti-oxidant species, metabolic and signalling genes) indicative of adoption by astrocytes of a pro-survival phenotype. Expression profiles of key changes with Fasudil and another ROCK inhibitor Y27632 were validated by real-time PCR. Although effects of ROCK inhibition have been considered to be primarily cytoskeletal via reduction of glial scarring, we demonstrate additional advantageous actions likely to contribute to their ameliorative actions in brain injury.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Astrocytes/drug effects , Astrocytes/enzymology , Gene Expression Profiling/methods , Transcriptome/drug effects , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Astrocytes/cytology , Mice , Mice, Inbred C57BL , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Transcriptome/genetics , rho-Associated Kinases/genetics
3.
Neurochem Res ; 35(5): 735-42, 2010 May.
Article in English | MEDLINE | ID: mdl-20143158

ABSTRACT

Astrocytic excitatory amino acid transporters (EAATs) regulate excitatory transmission and limit excitotoxicity. Evidence for a functional interface between EAATs and glial fibrillary acidic protein (GFAP) relevant to astrocytic morphology led to investigations of actions of transportable (D-Aspartate (D-Asp) and (2S,3S,4R)-2-(carboxycyclopropyl)glycine (L-CCG-III)) and non-transportable (DL-threo-beta-benzyloxyaspartate (DL-TBOA)) inhibitors of Glu uptake in murine astrocytes. D-Asp (1 mM), L-CCG-III (0.5 mM) and DL-TBOA (0.5 mM) produced time-dependent (24-72 h) reductions in (3)[H]D-Asp uptake (approximately 30-70%) with little or no gliotoxicity. All drugs induced a profound change in phenotype from cobblestone to stellate morphology and image analysis revealed increases in the intensity of GFAP immunolabelling for L-CCG-III and DL-TBOA. Cytochemistry indicated localized changes in F-actin distribution. Cell surface expression of EAAT2, but not EAAT1, was elevated at 72 h. Blockade of Glu uptake by both types of EAAT inhibitor exerts longer-term effects on astrocytic morphology and a compensatory homeostatic rise in EAAT2 abundance.


Subject(s)
Astrocytes/drug effects , Excitatory Amino Acid Transporter 2/genetics , Glutamates/metabolism , Amino Acids, Dicarboxylic/metabolism , Amino Acids, Dicarboxylic/pharmacology , Animals , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Astrocytes/cytology , Cells, Cultured , Excitatory Amino Acid Antagonists , Excitatory Amino Acid Transporter 1/biosynthesis , Excitatory Amino Acid Transporter 2/biosynthesis , Mice
4.
Glia ; 57(2): 119-35, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18661557

ABSTRACT

In amyotrophic lateral sclerosis (ALS) non-neuronal cells play key roles in disease etiology and loss of motoneurons via noncell-autonomous mechanisms. Reactive astrogliosis and dysfunctional transporters for L-glutamate [excitatory amino acid transporters, (EAATs)] are hallmarks of ALS pathology. Here, we describe mechanistic insights into ALS pathology involving EAAT-associated homeostasis in response to a destructive milieu, in which oxidative stress and excitotoxicity induce respectively astrogliosis and motoneuron injury. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that EAAT activity was maintained initially, despite a loss of cellular viability induced by exposure to oxidative [3-morpholinosydnonimine chloride (SIN-1)] and excitotoxic [(S)-5-fluorowillardiine (FW)] conditions. This homeostatic response of EAAT function involved no change in the cell surface expression of EAAT1/2 at 0.5-4 h, but rather alterations in kinetic properties. Over this time-frame, EAAT1/2 both became more widespread across astrocytic arbors in concert with increased expression of glial fibrillary acidic protein (GFAP), although at 8-24 h there was gliotoxicity, especially with SIN-1 rather than FW. An opposite picture was found for motoneurons where FW, not SIN-1, produced early and extensive neuritic shrinkage and blebbing (> or =0.5 h) with somata loss from 2 h. We postulate that EAATs play an early homeostatic and protective role in the pathologic milieu. Moreover, the differential profiles of injury produced by oxidative and excitotoxic insults identify two distinct phases of injury which parallel important aspects of the pathology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Anterior Horn Cells/metabolism , Astrocytes/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Gliosis/metabolism , Oxidative Stress/physiology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Anterior Horn Cells/pathology , Astrocytes/drug effects , Astrocytes/pathology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Coculture Techniques , Cytoprotection/drug effects , Cytoprotection/physiology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Transporter 2/metabolism , Glial Fibrillary Acidic Protein/metabolism , Gliosis/physiopathology , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Homeostasis/drug effects , Homeostasis/physiology , Mice , Mice, Inbred C57BL , Molsidomine/analogs & derivatives , Molsidomine/toxicity , Neurotoxins/metabolism , Neurotoxins/toxicity , Nitric Oxide Donors/toxicity , Oxidative Stress/drug effects , Time Factors
5.
Neurochem Res ; 34(10): 1721-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19479374

ABSTRACT

Metabotropic glutamate receptors (mGluRs) may play a role in modulating microglial activation, but group I mGluRs have received little attention. This study aimed to investigate the effects of group I mGluR selective ligands, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), in lipopolysaccharide (LPS; 50 ng/ml)-activated rat microglial cultures. (S)-3,5-DHPG (150 microM) significantly reduced (approximately 20-60%) the LPS-mediated production of nitrite (NO2(-)), tumour necrosis factor alpha (TNF-alpha), and L-glutamate (Glu) at 24 and 72 h. Image analysis revealed increases in both cell area and number, with larger amoeboid microglia (with retracted processes) formed following 2 h LPS exposure. This cellular population was absent after addition of (S)-3,5-DHPG, an effect antagonised by AIDA, and a concomitant reduction in cell area was also found. Taken together, these biochemical and morphological observations suggest that (S)-3,5-DHPG reduces microglial activation, indicating a role for group I mGluRs in modulating microglial function.


Subject(s)
Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Lipopolysaccharides/pharmacology , Microglia/drug effects , Microglia/physiology , Receptors, Metabotropic Glutamate/classification , Receptors, Metabotropic Glutamate/physiology , Animals , Animals, Newborn , Cells, Cultured , Drug Synergism , Excitatory Amino Acid Agonists/metabolism , Excitatory Amino Acid Antagonists/metabolism , Glutamic Acid/biosynthesis , Glutamic Acid/metabolism , Glycine/analogs & derivatives , Glycine/metabolism , Glycine/pharmacology , Ligands , Lipopolysaccharides/antagonists & inhibitors , Microglia/metabolism , Nitrites/antagonists & inhibitors , Nitrites/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Resorcinols/metabolism , Resorcinols/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis
6.
J Neurotrauma ; 36(14): 2260-2271, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30843474

ABSTRACT

Rodent models can provide insights into the most pertinent issues surrounding concussion. Nonetheless, the relevance of some existing models to clinical concussion can be questioned, particularly with regard to the use of surgery and anesthesia and the mechanism and severity of injury. Accordingly, we have co-developed an awake closed-head injury (ACHI) model in rats. Here, we aimed to create a temporal profile of the neurobehavioral and neuropathological effects of a single ACHI. Adolescent male rats were placed in a restraint bag and a steel helmet was positioned over the head such that the impact target was centered over the left parietal cortex. Once positioned on a foam platform, a cortical impactor was used to strike the helmet. Sham animals underwent the same procedure without impact. When compared with sham rats, those given a single ACHI displayed evidence of sensorimotor deficits and reduced exploratory behavior within the first 20 min post-injury; however, these effects were resolved after 24 h. A single ACHI impaired spatial memory on the Y-maze task at both 5 min and 24 h post-ACHI; however, no deficits were apparent at 48 h. Immunostaining revealed region-specific increases in ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein expression at 3 days post-impact, with no differences found at either 1 or 14 days. Taken together, our findings indicate that a single ACHI results in transient neurobehavioral and glial disturbances and as such, this model may be a valuable tool for pre-clinical concussion research.


Subject(s)
Brain Concussion/physiopathology , Disease Models, Animal , Neuroglia , Animals , Consciousness , Exploratory Behavior , Head Injuries, Closed/physiopathology , Male , Maze Learning , Rats , Rats, Long-Evans
7.
J Mater Chem B ; 5(22): 4073-4083, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-32264140

ABSTRACT

Astrocytes represent an attractive therapeutic target for the treatment of traumatic brain injury in the glial scar, which inhibits functional repair and recovery if persistent. Many biomaterial systems have been investigated for neural tissue engineering applications, including electrospun nanofibres, which are a favourable biomaterial as they can mimic the fibrous architecture of the extracellular matrix, and are conveniently modified to present biologically relevant cues to aid in regeneration. Here, we synthesised a novel galactose-presenting polymer, poly(l-lysine)-lactobionic acid (PLL-LBA), for use in layer-by-layer (LbL) functionalisation of poly(ε-caprolactone) (PCL) nanofibres, to covalently attach galactose moieties to the nanofibre scaffold surface. We have assessed the use of this novel biomaterial system in vitro and in vivo, and have shown, for the first time, the ability of galactose to maintain an attenuated inflammatory profile of astrocytes in culture, and to increase the survival of neurons after traumatic injury, as compared to control PCL nanofibres. This study highlights the importance of galactose in controlling the astrocytic response, and provides a promising biomaterial system to deliver the essential morphological and biological cues to achieve functional repair after traumatic brain injury.

8.
Neurochem Int ; 48(6-7): 604-10, 2006.
Article in English | MEDLINE | ID: mdl-16530295

ABSTRACT

Excitatory amino acid transporters (EAATs) are responsible for homeostasis of extracellular L-glutamate, and the glial transporters are functionally dominant. EAAT expression or function is altered in acute and chronic neurological conditions, but little is known about the regulation of EAATs in reactive astroglia found in such neuropathologies. These studies examined the effects of the bacterial endotoxin lipopolysaccharide (LPS) on glial EAATs in vitro. The effects of LPS (1 microg/ml, 24-72 h) on EAAT activity and expression were examined in primary cultures of mouse astrocytes. [(3)H]D-aspartate uptake increased to 129% of control by 72 h treatment with LPS. Saturation analysis revealed that apparent K(m) was unchanged whilst V(max) was significantly increased to 172% of control by 72 h LPS treatment. Biotinylation and Western blotting indicated that cell-surface expression of GLT-1 was significantly elevated (146% control) by LPS treatment whereas GLAST expression was unchanged. Confocal analyses revealed that LPS treatment resulted in cytoskeletal changes and stellation of astrocytes, with rearrangement of F-actin (as shown by phalloidin labelling). Immunocytochemistry revealed clustering of GLAST, and increased expression and redistribution of GLT-1 to the cell-surface following treatment with LPS. Similar experiments were conducted in microglia, where LPS (50 ng/ml) was found to up-regulate expression of GLT-1 at 24 and 72 h in concert with cytoskeletal changes accompanying activation. These findings suggest an association of cytoskeletal changes in glia with EAAT activity, with the predominant adaptation involving up-regulation and redistribution of GLT-1.


Subject(s)
Excitatory Amino Acid Transporter 2/metabolism , Lipopolysaccharides/pharmacology , Neuroglia/drug effects , Actins/metabolism , Animals , Animals, Newborn , Aspartic Acid/metabolism , Astrocytes/drug effects , Astrocytes/ultrastructure , Biotinylation , Blotting, Western , Cells, Cultured , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Excitatory Amino Acid Transporter 1/biosynthesis , Excitatory Amino Acid Transporter 2/biosynthesis , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microscopy, Confocal , Neuroglia/cytology , Neuroglia/metabolism , Phenotype , Protein Transport , Up-Regulation
9.
Neurosci Lett ; 385(1): 52-7, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-15927375

ABSTRACT

Exposure of the brain to a sublethal insult can protect against a subsequent brain injury. Hypoxic preconditioning induces tolerance to hypoxic--ischemic injury in neonatal rat brain and is associated with changes in gene and protein expression. To study the involvement of excitatory amino acid transporters (EAAT1 and EAAT2) and estrogen receptors (ERalpha and ERbeta) in neonatal hypoxia--induced ischemic tolerance, we examined changes in expression of these proteins in the cortex, hippocampus and striatum of newborn rats at different time points after exposure to sublethal hypoxia (8% O(2), 3h). Preconditioning with hypoxia 24h before hypoxia-ischemia afforded marked brain protection compared with littermate control animals as determined by morphological assessment. Immunoblot analysis showed that EAAT2 and ERalpha were significantly increased by 55% and 49%, respectively, in cortex at 24h after hypoxic-preconditioning. Surprisingly, at the same time point, a significant decrease of EAAT2 by 48% in striatum was observed. In contrast, hypoxic preconditioning had no effect on the levels of EAAT1 and ERbeta in any of the brain regions studied at any of the time points analyzed. The similar pattern of changes in EAAT2 and ERalpha levels suggests that ERalpha might interact with EAAT2 in producing preconditioning. The endogenous molecular mechanisms modulated by hypoxia preconditioning may contribute to the development of hypoxia-induced ischemic tolerance, and may provide novel therapeutic targets for the treatment of cerebral ischemia.


Subject(s)
Brain/metabolism , Estrogen Receptor alpha/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Hypoxia-Ischemia, Brain/metabolism , Ischemic Preconditioning , Amino Acid Transport System X-AG/metabolism , Animals , Animals, Newborn , Blotting, Western/methods , Brain/growth & development , Brain/pathology , Excitatory Amino Acid Transporter 1 , Glutamate Plasma Membrane Transport Proteins , Hypoxia-Ischemia, Brain/pathology , Rats , Rats, Sprague-Dawley , Symporters/metabolism , Time Factors
10.
Neurotox Res ; 7(1-2): 143-9, 2005.
Article in English | MEDLINE | ID: mdl-15639805

ABSTRACT

The astrocytic glutamate transporters, EAAT1 and EAAT2, remove released L-glutamate from the synaptic milieu thereby maintaining normal excitatory transmission. EAAT dysfunction during the excitotoxicity and oxidative stress of neurological insults may involve homoeostatic mechanisms associated with astrocytic function. We investigated aspects of EAAT function and expression in concert with astrocytic phenotype in primary cultures of cortical astrocytes and mixed cells of the spinal cord. In spinal cord mixed cultures, hydrogen peroxide (300 microM) reduced both EAAT activity and cellular viability to half of their basal values at 24 h post-treatment, but at 2 h EAAT activity was unaltered, while cellular viability was significantly decreased, suggestive of a mechanism for the maintenance of EAAT activity. Cytochemistry for MAP2, GFAP and propidium iodide revealed that neurons and astrocytes were damaged in a time-dependent manner. A change in astrocyte morphology was observed, with astrocyte cell bodies becoming larger and processes becoming more stellate and often shorter in length. EAAT1 immunoreactivity was reduced at 24 h post-treatment and a re-distribution of the protein was noted after 2 h treatment. In pure astrocytes, lipopolysaccharide (1 microg/ml, 3 d) increased [3H]D-aspartate uptake by 90%, as well EAAT1 immunoreactivity and astrocyte stellation, as shown by immunofluorescent labelling for GFAP. In both culture systems, prominent changes were noted in EAAT function and localization in conjunction with altered astrocytic phenotype. Our findings are indicative of a relationship between astrocytic phenotype and the level of EAAT activity that may be a vital component of astrocytic homeostatic responses in brain injury.


Subject(s)
Astrocytes/metabolism , Excitatory Amino Acid Transporter 1/biosynthesis , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 2/biosynthesis , Excitatory Amino Acid Transporter 2/genetics , Phenotype , Animals , Astrocytes/drug effects , Cells, Cultured , Hydrogen Peroxide/pharmacology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Spinal Cord/cytology , Spinal Cord/drug effects , Spinal Cord/metabolism
11.
Front Neurosci ; 9: 50, 2015.
Article in English | MEDLINE | ID: mdl-25750613

ABSTRACT

Astrocytes provide trophic, structural and metabolic support to neurons, and are considered genuine targets in regenerative neurobiology, as their phenotype arbitrates brain integrity during injury. Inhibitors of Rho kinase (ROCK) cause stellation of cultured 2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated expression of BDNF and anti-oxidant genes. Here we further explored the signposts of a cytotrophic, "healthy" phenotype by data-mining of our astrocytic transcriptome in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular cascades and inflammatory/angiogenic responses were all inhibited, favoring adoption of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can influence the extracellular matrix. We built upon our evidence that astrocytes maintained on 3D poly-ε-caprolactone (PCL) electrospun scaffolds adopt a cytotrophic phenotype similar to that produced by Fasudil. Using these procedures, employing mature 3D cultured astrocytes, Fasudil (100 µM) or Y27632 (30 µM) added for the last 72 h of culture altered arborization, which featured numerous additional minor processes as shown by GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased G-actin labeling, indicative of disassembly of actin stress fibers. ROCK inhibitors provide additional beneficial effects for bioengineered 3D astrocytes, including enlargement of the overall arbor. Potentially, the combined strategy of bio-compatible scaffolds with ROCK inhibition offers unique advantages for the management of glial scarring. Overall these data emphasize that manipulation of the astrocyte phenotype to achieve a "healthy biology" offers new hope for the management of inflammation in neuropathologies.

12.
Neuropharmacology ; 43(2): 189-203, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12213273

ABSTRACT

Signal transduction mechanisms of group II metabotropic glutamate receptors (mGlu(2/3)) remains a matter of some controversy, therefore we sought to gain new insights into its regulation by studying cAMP production in cultured neurons and astrocytes, and by examining inter-relationships of mGlu(2/3)-induced signalling with cellular calcium and various signalling cascades. mGlu(2/3) agonists 2R,4R-4-aminopyrrolidine-2,4-dicarboxylic acid (2R,4R-APDC) and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) inhibited 10 microM forskolin-stimulated production of cAMP in murine cortical neurons, striatal neurons and forebrain astrocytes in the absence of extracellular Ca(2+). These agonists potentiated cAMP production in the presence of 1.8 mM Ca(2+) in astrocytes only. This potentiation was dependent on the extracellular Ca(2+) concentration (0.001-10 mM) and inhibited by the mGlu(2/3) antagonist LY341495 (1 microM), adenosine deaminase (1 U/ml) and the adenosine A(2A) receptor antagonist ZM241385 (1 microM). Pre-incubation with the phospholipase C (PLC) inhibitor U73122 (10 microM), L-type Ca(2+)-channel blockers nifedipine (1 microM) and nimodipine (1 microM), the calmodulin kinase II (CaMKII) inhibitor KN-62 (10 microM) or pertussis toxin (100 ng/ml) inhibited this potentiation. In the absence of 1.8 mM Ca(2+), thapsigargin (1 microM) facilitated the potentiation of cAMP production. Measurement of the Ca(2+)-binding dye Fluo-3/AM showed that, compared to Ca(2+)-free conditions, thapsigargin and 1.8 mM Ca(2+) elevated [Ca(2+)](i) in astrocytes; the latter effect being prevented by L-type Ca(2+)-channel blockers. Potentiation of cAMP production was also demonstrated when astrocytes were stimulated with the beta-adrenoceptor agonist isoprenaline (10 microM) in the presence of 1.8 mM Ca(2+), but not with the adenosine agonist NECA (10 microM) or the group I mGlu receptor agonist DHPG (100 microM). BaCl(2) (1.8 mM) in place of Ca(2+) did not facilitate forskolin-stimulated mGlu(2/3)-potentiation of cAMP. In short, this study in astrocytes demonstrates that under physiological Ca(2+) and adenylate cyclase stimulation an elevation of cAMP production is achieved that is mediated by PLC/IP(3)- and CaMKII-dependent pathways and results in the release of endogenous adenosine which acts at G(s) protein-coupled A(2A) receptors. These findings provide new insights into mGlu(2/3) signalling in astrocytes versus neurons, and which could determine the functional phenotypy of astrocytes under physiological and pathological conditions.


Subject(s)
Astrocytes/metabolism , Calcium/pharmacology , Cyclic AMP/physiology , Neurons/metabolism , Receptors, Metabotropic Glutamate/physiology , Animals , Animals, Newborn , Astrocytes/cytology , Astrocytes/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Corpus Striatum/cytology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Drug Synergism , Embryo, Mammalian , Mice , Models, Biological , Neurons/cytology , Neurons/drug effects , Receptors, Metabotropic Glutamate/agonists
13.
Neurochem Int ; 61(4): 523-30, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22421531

ABSTRACT

Non-cell autonomous pathology is widely accepted to determine the demise of motoneurons (MNs) in amyotrophic lateral sclerosis (ALS) with astrocytes, GFAP and glutamate transport suggested to play roles in reactive astrogliosis. Previously we described actions of excitotoxicity and oxidative stress to produce differential injury of motoneurons and astrocytes, respectively, and our goal here was to define patterns of MN injury and astrogliosis during a combined excitotoxic-oxidative injury since such a paradigm more closely models disease pathology. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that glutamate transport activity was maintained or increased initially, despite a loss of cellular viability, induced by exposure to combinations of excitotoxic [(S)-5-fluorowillardiine (FW)] and oxidative [3-morpholinosydnonimine (SIN-1)] insults over 48 h. Under these conditions, injury was slow in time course and apoptotic-like as shown by the patterns of annexin V and propidium iodide (PI) labelling. Immunocytochemistry for SMI-32 revealed that injury produced time- and insult-dependent reductions in the size of MN arbours, axonal dieback and appreciable neuritic blebbing. These changes were preceded by early hypertrophy of GFAP-positive astrocytes, and followed by more delayed stellation and eventual gliotoxicity. Alterations to EAAT2 immunolabelling were similar to those found for GFAP being initially maintained and then eventually reduced at 48 h. Image analysis of immunocytochemical data confirmed the differential time-dependent changes found with SMI-32, GFAP and EAAT2. Axonopathy and blebbing of MNs was frequently associated with areas of low GFAP immunoreactivity. The exact profile of changes to MNs and astrocytes was context-dependent and sensitive to subtle changes in the mix of excitotoxic-oxidative insults. Overall our findings are consistent with the concepts that the nature, extent and time-course of astrogliosis are insult-dependent, and that discrete pro-survival and destructive components of astrogliosis are likely to determine the precise profile of MN injury in non-cell autonomous pathology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Astrocytes/pathology , Axons , Motor Neurons/pathology , Oxidative Stress , Amyotrophic Lateral Sclerosis/metabolism , Animals , Astrocytes/metabolism , Immunohistochemistry , Mice , Motor Neurons/metabolism
14.
Neurochem Res ; 31(4): 483-90, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16758356

ABSTRACT

The molecular basis of estrogen-mediated neuroprotection against brain ischemia remains unclear. In the present study, we investigated changes in expression of estrogen receptors (ERs) alpha and beta and excitatory amino acid transporters (EAAT) 1 and 2 in rat organotypic hippocampal slice cultures treated with estradiol and subsequently exposed to oxygen--glucose deprivation (OGD). Pretreatment with 17beta-estradiol (10 nM) for 7 days protected the CA1 area of hippocampus against OGD (60 min), reducing cellular injury by 46% compared to the vehicle control group. Levels of ERalpha protein were significantly reduced by 20% after OGD in both vehicle- and estradiol-treated cultures, whereas ERbeta was significantly up-regulated by 25% in the estradiol-treated cultures. In contrast, EAAT1 and EAAT2 levels were unchanged in response to estradiol treatment in this model of OGD. These findings suggest that estrogen-induced neuroprotection against ischemia might involve regulation of ERbeta and, consequently, of the genes influenced by this receptor.


Subject(s)
Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glucose/metabolism , Hippocampus/cytology , Hypoxia , Animals , Cells, Cultured , Hippocampus/metabolism , Male , Rats , Rats, Wistar
15.
J Neurosci Res ; 75(6): 751-9, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-14994336

ABSTRACT

Transporters for L-glutamate (excitatory amino acid transporters; EAATs), localized to astrocytes, are involved intimately in intermediary metabolism within the brain. Because (2S,4R)-4-methylglutamate (4MG) has affinity for glial EAATs, we employed [(3)H]4MG to define the characteristics of EAATs in cultured murine astrocytes and describe new approaches to analyze EAAT function. Specific binding of [(3)H]4MG in astrocytic membranes at 4 degrees C represented 90% of total binding. Binding was rapid (apparent t(1/2) approximately 7 min) and saturable. Saturation and Scatchard analyses indicated a single binding site (n(H) = 0.8) with a K(d) of 6.0 +/- 1.5 microM and B(max) = 9.7 +/- 2.9 pmol/mg protein. Binding of [(3)H]4MG to astrocytic homogenates was Na(+)-dependent and inhibited by K(+). Compounds acting at EAATs, such as L-glutamate (Glu), D-aspartate (D-Asp), L-(2S,3S,4R)-2-(carboxycyclopropyl)glycine and L-trans-pyrrolidine-2,4-dicarboxylate displaced binding to nonspecific levels. L-Serine-O-sulphate, an EAAT1-preferring ligand, fully displaced binding of [(3)H]4MG. In contrast, inhibitors having preferential affinity for EAAT2, L-threo-3-methylglutamate, dihydrokainate, and kainate, were relatively ineffective binding displacers. Agonists and antagonists for Glu receptors failed to significantly inhibit [(3)H]4MG binding. Studies with [(3)H]D-Asp reinforced evidence that [(3)H]4MG was binding to EAATs. These data were consistent with Western blot analyses, which indicated abundant expression of EAAT1 but not EAAT2. [(3)H]4MG was also accumulated rapidly (apparent t(1/2) approximately 4 min) into whole astrocytes by a sodium- and temperature-sensitive process (K(m) of 146 +/- 24 microM, V(max) = 336 +/- 27 nmol/mg protein/min), which possessed an EAAT1-like pharmacologic profile. These findings confirm that 4MG is a substrate for EAAT1 and that the binding assay developed using [(3)H]4MG can be utilized in various preparations including cultured astrocytes.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Astrocytes/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Glutamates/pharmacokinetics , Serine/analogs & derivatives , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Amino Acids, Dicarboxylic/pharmacology , Analysis of Variance , Animals , Animals, Newborn , Astrocytes/drug effects , Binding, Competitive , Blotting, Western/methods , Cell Membrane/drug effects , Cells, Cultured , D-Aspartic Acid/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Kainic Acid/pharmacology , Ligands , Mice , Potassium/metabolism , Serine/pharmacology , Sodium/metabolism , Temperature , Tritium/pharmacokinetics
16.
Neurochem Res ; 27(1-2): 5-13, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11926276

ABSTRACT

Removal of L-glutamate (Glu) from the synapse is critical to maintain normal transmission and to prevent excitotoxicity, and is performed exclusively by excitatory amino acid transporters (EAATs). We investigated the effects of substrates and blockers of EAATs on extracellular Glu and cellular viability in organotypic cultures of rat hippocampus. Seven-day treatment with a range of drugs (L-trans-pyrrolidine-2,4-dicarboxylate, (2S,4R)-4-methyl-glutamate, (+/-)-threo-3-methylglutamate and DL-threo-beta-benzyloxyaspartate), in the presence of 300 microM added Glu, resulted in increased extracellular Glu and a significant correlation between Glu concentration and cellular injury (as indicated by lactate dehydrogenase release). In contrast, (2S,3s,4R)-2-(carboxycyclopropyl)glycine (L-CCG-III) exerted a novel neuroprotection against this toxicity, and elevations in extracellular Glu were not toxic in the presence of this compound. Similar results were obtained following two-week treatment of cultures without added Glu. Whilst blockade of GLT-1 alone was relatively ineffective in producing excitotoxic injury, heteroexchange of Glu by EAAT substrates may exacerbate excitotoxicity.


Subject(s)
Amino Acid Transport System X-AG/drug effects , Amino Acid Transport System X-AG/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/metabolism , Animals , Cell Survival/drug effects , Drug Evaluation , Extracellular Space/metabolism , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Neuroprotective Agents/pharmacology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL