ABSTRACT
In this study, six curcuminoids containing a tert-butoxycarbonyl (Boc) piperidone core were successfully synthesized, five of them are novel compounds reported here for the first time. These compounds were prepared through an aldolic condensation by adding tetrahydropyranyl-protected benzaldehydes or substituted benzaldehyde to a reaction mixture containing 4-Boc-piperidone and lithium hydroxide in an alcoholic solvent. A 44-94% yield was obtained supporting the developed methodology as a good strategy for the synthesis of 4-Boc-piperidone chalcones. Cytotoxic activity against LoVo and COLO 205 human colorectal cell lines was observed at GI50 values that range from 0.84 to 34.7⯵g/mL, while in PC3 and 22RV1 human prostate cancer cell lines, GI50 values ranging from 17.1 to 22.9⯵g/mL were obtained. Results from biochemical assays suggest that the cytotoxicity of the 4-Boc-piperidone chalcones can be linked to their ability to induce apoptosis, decrease the activity of NFκB and cellular proliferation. Our findings strongly support the potential of Boc-piperidone chalcones as novel cytotoxic agents against highly-metastatic cancer cells.
Subject(s)
Antineoplastic Agents/therapeutic use , Chalcones/chemical synthesis , Neoplasms/drug therapy , Piperidones/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Structure-Activity RelationshipABSTRACT
BACKGROUND: The coronavirus, SARS-CoV-2, is the causative agent for COVID-19, first registered in Wuhan, China and responsible for more than 6 million deaths worldwide. Currently, RT-PCR is the gold-standard method for diagnosing COVID-19. However, serological tests are needed for screening acute disease diagnosis and screening large populations during the COVID-19 outbreak. OBJECTIVES: Herein, we described the development and validation of an in-house enzyme-linked immunosorbent assay (ELISA) for detecting the levels of anti-spike-1-RBD IgM antibody (CovIgM-ELISA) in well-defined serum/plasma panel for screening and identifying subjects infected with SARS-CoV-2 in a Latin population. METHOD: In-house CovIgM-ELISA has the format of an indirect ELISA. It was optimized by checkerboard titration using recombinant SARS-CoV-2 spike-S1-RBD protein as an antigen. RESULTS: We found that, compared to the RT-PCR as the standard method, the in-house CovIgM-ELISA displayed sensitivities of 96.15% and 93.22% for samples collected up to 30 or 60 days after infection, respectively, as well as 95.59% specificity with 97.3% accuracy. The agreement kappa value (κ) of our CovIgM-ELISA was substantial when compared to RT-PCR (κ = 0.873) and the anti-SARS-CoV-2 IgM ELISA (InBios Int) (κ = 0.684). The IgM levels detected in the population positively correlated with the neutralizing activity against the wild-type, Alpha and Delta variants of concern, but failed to neutralize Omicron. CONCLUSIONS: These data indicate that our in-house CovIgM-ELISA is a compatible performing assay for the detection of SARS-CoV-2 infection.
ABSTRACT
The aim of this study was to analyze the profiles of IgG subclasses in COVID-19 convalescent Puerto Rican subjects and compare these profiles with those of non-infected immunocompetent or immunocompromised subjects that received two or more doses of an mRNA vaccine. The most notable findings from this study are as follows: (1) Convalescent subjects that were not hospitalized developed high and long-lasting antibody responses. (2) Both IgG1 and IgG3 subclasses were more prevalent in the SARS-CoV-2-infected population, whereas IgG1 was more prevalent after vaccination. (3) Individuals that were infected and then later received two doses of an mRNA vaccine exhibited a more robust neutralizing capacity against Omicron than those that were never infected and received two doses of an mRNA vaccine. (4) A class switch toward the "anti-inflammatory" antibody isotype IgG4 was induced a few weeks after the third dose, which peaked abruptly and remained at high levels for a long period. Moreover, the high levels of IgG4 were concurrent with high neutralizing percentages against various VOCs including Omicron. (5) Subjects with IBD also produced IgG4 antibodies after the third dose, although these antibody levels had a limited effect on the neutralizing capacity. Knowing that the mRNA vaccines do not prevent infections, the Omicron subvariants have been shown to be less pathogenic, and IgG4 levels have been associated with immunotolerance and numerous negative effects, the recommendations for the successive administration of booster vaccinations to people should be revised.
Subject(s)
COVID-19 , Immunoglobulin G , Humans , mRNA Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccination , RNA, Messenger/genetics , Antibodies, Neutralizing , Antibodies, ViralABSTRACT
The antibacterial activity of fatty acids (FA) is well known in the literature and represents a promising option for developing the next-generation of antibacterial agents to treat a broad spectrum of bacterial infections. FA are highly involved in living organisms' defense system against numerous pathogens, including multidrug-resistant bacteria. When combined with other antibacterial agents, the remarkable ability of FA to enhance their bactericidal properties is a critical feature that is not commonly observed in other naturally-occurring compounds. More reviews focusing on FA antibacterial activity, traditional and non-traditional mechanisms and biomedical applications are needed. This review is intended to update the reader on the antibacterial properties of recent FA and how their chemical structures influence their antibacterial activity. This review also aims to better understand both traditional and non-traditional mechanisms involved in these recently explored FA antibacterial activities.
Subject(s)
Anti-Bacterial Agents , Fatty Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic useABSTRACT
In the present study, the structural characteristics that impart antibacterial activity to C16 alkynoic fatty acids (aFA) were further investigated. The syntheses of hexadecynoic acids (HDA) containing triple bonds at C-3, C-6, C-8, C-9, C-10, and C-12 were carried out in four steps and with an overall yield of 34-78%. In addition, HDA analogs containing a sulfur atom at either C-4 or C-5 were also prepared in 69-77% overall yields, respectively. Results from this study revealed that the triple bond at C-2 is pivotal for the antibacterial activity displayed by 2-HDA, while the farther the position of the triple bond from the carbonyl group, the lower its bactericidal activity against gram-positive bacteria, including clinical isolates of methicillin-resistant Staphylococcus aureus (CIMRSA) strains. The potential of 2-HDA as an antibacterial agent was also assessed in five CIMRSA strains that were resistant to Ciprofloxacin (Cipro) demonstrating that 2-HDA was the most effective treatment in inhibiting their growth when compared with either Cipro alone or equimolar combinations of Cipro and 2-HDA. Moreover, it was proved that the inhibition of S. aureus DNA gyrase can be linked to the antibacterial activity displayed by 2-HDA. Finally, it was determined that the ability of HDA analogs to form micelles can be linked to their decreased activity against gram-positive bacteria, since critical micellar concentrations (CMC) between 50 and 300 µg/mL were obtained.