Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Chem Rec ; 19(1): 204-211, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30638298

ABSTRACT

By applying advanced telecommunication solid state devices to microwave (MW) resonant cavity system for flow chemistry, it becomes possible to heat up low polarity solvents higher than 250 C, that are considered impossible to heat up by MW until now. The resonant cavity system is opening new process windows to production processes of specialty chemicals which require low cost, high yield and high productivity.

2.
J Org Chem ; 83(8): 4348-4354, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29642704

ABSTRACT

The synergy of continuous processing and microwave heating technologies has unlocked scalable (g/h), safe and efficient reaction conditions for synthesis of fullerene/indene-based organic photovoltaic acceptor materials in a nonchlorinated solvent with levels of productivity unparalleled by previous syntheses. The microwave flow reactor sustains high temperature while employing short residence times, reaction conditions which uniquely allow the selective synthesis of fullerene/indene monoadducts. Design of experiments analysis revealed residence time as the most crucial factor for conversion and selectivity control.

3.
Org Biomol Chem ; 16(41): 7568-7573, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30298895

ABSTRACT

C-Alkylation of N-alkylamides with styrenes is reported, proceeding in ambient air/moisture to give arylbutanamides and pharmaceutically-relevant scaffolds in excellent mass balance. Various amide and styrene derivatives were tolerated, rapidly affording molecular complexity in a single step; thus highlighting the future utility of this transformation in the synthetic chemistry toolbox. Reaction scalability (up to 65 g h-1 product) was demonstrated using a Microwave Flow reactor, as the first example of a C-alkylation reaction using styrenes in continuous flow.

SELECTION OF CITATIONS
SEARCH DETAIL