Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Cell ; 175(4): 1014-1030.e19, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30343900

ABSTRACT

Although current immune-checkpoint therapy (ICT) mainly targets lymphoid cells, it is associated with a broader remodeling of the tumor micro-environment. Here, using complementary forms of high-dimensional profiling, we define differences across all hematopoietic cells from syngeneic mouse tumors during unrestrained tumor growth or effective ICT. Unbiased assessment of gene expression of tumor-infiltrating cells by single-cell RNA sequencing (scRNAseq) and longitudinal assessment of cellular protein expression by mass cytometry (CyTOF) revealed significant remodeling of both the lymphoid and myeloid intratumoral compartments. Surprisingly, we observed multiple subpopulations of monocytes/macrophages, distinguishable by the markers CD206, CX3CR1, CD1d, and iNOS, that change over time during ICT in a manner partially dependent on IFNγ. Our data support the hypothesis that this macrophage polarization/activation results from effects on circulatory monocytes and early macrophages entering tumors, rather than on pre-polarized mature intratumoral macrophages.


Subject(s)
Lymphocytes/immunology , Myeloid Cells/immunology , Neoplasms/immunology , Single-Cell Analysis , Transcriptome , Animals , Cell Line, Tumor , Flow Cytometry , Immunotherapy/methods , Interferon-gamma/immunology , Macrophage Activation , Male , Mass Spectrometry , Mice , Monocyte-Macrophage Precursor Cells/immunology , Neoplasms/therapy
3.
Blood ; 143(23): 2414-2424, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38457657

ABSTRACT

ABSTRACT: Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient-derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor-associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , NF-kappa B , Signal Transduction , Animals , Mice , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , NF-kappa B/metabolism , Mice, Knockout , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
4.
Blood ; 143(16): 1646-1655, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38142448

ABSTRACT

ABSTRACT: Polycythemia vera (PV) is a myeloproliferative neoplasm characterized by clonal proliferation of hematopoietic progenitor cells and is associated with an increased risk of thrombotic events (TEs). Established risk factors for TEs in patients with PV include advanced age, TE history, and elevated hematocrit. Although an association of TE with elevated white blood cell (WBC) counts has been suggested by retrospective studies, this relationship needs further validation. The prospective observational study of patients with polycythemia vera in US clinical practices (REVEAL) study collected prospective clinical data from 2510 patients with PV with a median follow-up of 44.7 months (range, 2-59 months) from enrollment. Using time-dependent covariate Cox proportional hazards models, blood counts were individually modeled with sex, age, disease duration, TE history at enrollment (baseline covariates), and treatment (time-dependent covariate). Analysis of 2271 participants identified 142 TEs in 106 patients. Significant associations with initial TE occurrence during the study period were observed for hematocrit level >45% (hazard ratio [HR], 1.84; 95% confidence interval [95% CI], 1.234-2.749; P = .0028) and WBCs >11 × 109/L (HR, 2.35; 95% CI, 1.598-3.465; P < .0001). Elevated WBC count was significantly associated with initial TE occurrence in both low-risk and high-risk PV. When hematocrit was controlled at ≤45%, WBC count >12 × 109/L was significantly associated with TE occurrence (HR, 1.95; 95% CI, 1.066-3.554; P = .0300). The results support incorporation of WBC count into PV risk stratification and studies of treatment strategies, and indicate the importance of controlling both hematocrit and WBC count in disease management. This trial was registered at www.clinicaltrials.gov as #NCT02252159.


Subject(s)
Polycythemia Vera , Thrombosis , Humans , Polycythemia Vera/drug therapy , Retrospective Studies , Prospective Studies , Thrombosis/etiology , Risk Factors , Leukocyte Count
5.
Value Health ; 27(5): 607-613, 2024 May.
Article in English | MEDLINE | ID: mdl-38311180

ABSTRACT

OBJECTIVES: Patients with myelofibrosis develop symptoms due to bone marrow fibrosis, systemic inflammation, and/or organomegaly. Alleviating symptoms improves overall quality of life. Clinical trials have historically defined symptom response as a reduction of at least 50% in Total Symptom Score at week 24 compared with baseline. Whether 50% constitutes a meaningful benefit has not been established. This study determined the meaningful change threshold (MCT) for 2 momelotinib phase III trials, SIMPLIFY-1 and SIMPLIFY-2. METHODS: The absolute and percentage MCT was determined using anchor-based methods applied to the modified Myeloproliferative Neoplasm Symptom Assessment Form v2.0 and Patient Global Impression of Change. MCTs were applied retrospectively to determine responder rates. Generalized estimating equations estimated the treatment-related difference in likelihood of improvement. RESULTS: In SIMPLIFY-1, a Janus kinase inhibitor-naive population, the MCT was 8 points. In SIMPLIFY-2, a previously Janus kinase inhibitor-treated population, the MCT was 6 points. A 32% MCT was determined in both studies, showing that the historic 50% reduction threshold may be a conservative choice. In SIMPLIFY-1, a similar proportion of patients achieved responder status with 24 weeks of momelotinib or ruxolitinib therapy based on the absolute MCT (39% vs 41%, respectively). In SIMPLIFY-2, a significantly greater proportion of patients treated with momelotinib achieved responder states compared with best available therapy based on absolute and percent change MCTs. CONCLUSIONS: This study demonstrates that momelotinib provided clinically meaningful symptom benefit for patients with myelofibrosis and provides insight into the appropriateness of the symptom change threshold used in historical studies.


Subject(s)
Primary Myelofibrosis , Pyrimidines , Quality of Life , Humans , Primary Myelofibrosis/drug therapy , Pyrimidines/therapeutic use , Female , Male , Middle Aged , Aged , Treatment Outcome , Retrospective Studies , Pyrazoles/therapeutic use , Benzamides/therapeutic use , Nitriles/therapeutic use
6.
Am J Hematol ; 98(7): 1029-1042, 2023 07.
Article in English | MEDLINE | ID: mdl-37203407

ABSTRACT

Small molecule inhibitors targeting JAK2 provide symptomatic benefits for myeloproliferative neoplasm (MPN) patients and are among first-line therapeutic agents. However, despite all having potent capacity to suppress JAK-STAT signaling, they demonstrate distinct clinical profiles suggesting contributory effects in targeting other ancillary pathways. Here, we performed comprehensive profiling on four JAK2 inhibitors either FDA-approved (ruxolitinib, fedratinib, and pacritinib) or undergoing phase 3 studies (momelotinib) to better outline mechanistic and therapeutic efficacy. Across JAK2-mutant in vitro models, all four inhibitors demonstrated similar anti-proliferative phenotypes, whereas pacritinib yielded greatest potency on suppressing colony formation in primary samples, while momelotinib exhibited unique erythroid colony formation sparing. All inhibitors reduced leukemic engraftment, disease burden, and extended survival across patient-derived xenograft (PDX) models, with strongest effects elicited by pacritinib. Through RNA-sequencing and gene set enrichment analyses, differential suppressive degrees of JAK-STAT and inflammatory response signatures were revealed, which we validated with signaling and cytokine suspension mass cytometry across primary samples. Lastly, we assessed the capacity of JAK2 inhibitors to modulate iron regulation, uncovering potent suppression of hepcidin and SMAD signaling by pacritinib. These comparative findings provide insight into the differential and beneficial effects of ancillary targeting beyond JAK2 and may help guide the use of specific inhibitors in personalized therapy.


Subject(s)
Bone Marrow Neoplasms , Janus Kinase Inhibitors , Myeloproliferative Disorders , Humans , Janus Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Myeloproliferative Disorders/genetics , Janus Kinase 2/genetics
7.
Cancer ; 128(13): 2420-2432, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35499819

ABSTRACT

The development of targeted therapies for the treatment of myelofibrosis highlights a unique issue in a field that has historically relied on symptom relief, rather than survival benefit or modification of disease course, as key response criteria. There is, therefore, a need to understand what constitutes disease modification of myelofibrosis to advance appropriate drug development and therapeutic pathways. Here, the authors discuss recent clinical trial data of agents in development and dissect the potential for novel end points to act as disease modifying parameters. Using the rationale garnered from latest clinical and scientific evidence, the authors propose a definition of disease modification in myelofibrosis. With improved overall survival a critical outcome, alongside the normalization of hematopoiesis and improvement in bone marrow fibrosis, there will be an increasing need for surrogate measures of survival for use in the early stages of trials. As such, the design of future clinical trials will require re-evaluation and updating to incorporate informative parameters and end points with standardized definitions and methodologies.


Subject(s)
Primary Myelofibrosis , Disease Progression , Hematopoiesis , Humans , Primary Myelofibrosis/drug therapy
8.
Haematologica ; 107(7): 1599-1607, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34551507

ABSTRACT

Thrombocytopenia is common in patients with myelofibrosis (MF) and is a well-established adverse prognostic factor. Both of the approved Janus kinase (JAK) inhibitors, ruxolitinib and fedratinib, can worsen thrombocytopenia and have not been evaluated in patients with severe thrombocytopenia (platelet counts <50×109/L). Pacritinib, a novel JAK2/interleukin-1 receptor-associated kinase 1 inhibitor, has been studied in two phase III trials (PERSIST-1 and PERSIST- 2), both of which enrolled patients with MF and severe thrombocytopenia. In order to better characterize treatment outcomes for this population with advanced disease, we present a retrospective analysis of efficacy and safety data in the 189 patients with severe thrombocytopenia treated in the PERSIST studies. The proportion of patients in the pacritinib group meeting efficacy endpoints was greater than in the BAT group for ≥35% spleen volume reduction (23% vs. 2%, P=0.0007), ≥50% modified Total Symptom Score reduction (25% vs. 8%, P=0.044), and self-reported symptom benefit ("much" or "very much" improved; 25% vs. 8%, P=0.016) at the primary analysis time point (week 24). The adverse event profile of pacritinib was manageable, and dose modification was rarely required. There was no excess in bleeding or death in pacritinib-treated patients. These results indicate that pacritinib is a promising treatment for patients with MF who lack safe and effective therapeutic options due to severe thrombocytopenia.


Subject(s)
Anemia , Primary Myelofibrosis , Thrombocytopenia , Anemia/chemically induced , Bridged-Ring Compounds , Humans , Janus Kinase 2 , Nitriles/therapeutic use , Primary Myelofibrosis/complications , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/drug therapy , Protein Kinase Inhibitors/adverse effects , Pyrimidines , Retrospective Studies , Thrombocytopenia/chemically induced , Thrombocytopenia/etiology
9.
Blood ; 134(11): 867-879, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31366621

ABSTRACT

Chronic neutrophilic leukemia (CNL), atypical chronic myeloid leukemia (aCML), and myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U) are a group of rare and heterogeneous myeloid disorders. There is strong morphologic resemblance among these distinct diagnostic entities as well as a lack of specific molecular markers and limited understanding of disease pathogenesis, which has made diagnosis challenging in certain cases. The treatment has remained empirical, resulting in dismal outcomes. We, therefore, performed whole-exome and RNA sequencing of these rare hematologic malignancies and present the most complete survey of the genomic landscape of these diseases to date. We observed a diversity of combinatorial mutational patterns that generally do not cluster within any one diagnosis. Gene expression analysis reveals enrichment, but not cosegregation, of clinical and genetic disease features with transcriptional clusters. In conclusion, these groups of diseases represent a continuum of related diseases rather than discrete diagnostic entities.


Subject(s)
Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Leukemia, Neutrophilic, Chronic/diagnosis , Leukemia, Neutrophilic, Chronic/genetics , Adult , Aged , Aged, 80 and over , Cells, Cultured , Cohort Studies , DNA Mutational Analysis , Diagnosis, Differential , Female , Gene Expression Profiling , Genomics , HEK293 Cells , Humans , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Prognosis
10.
Future Oncol ; 17(12): 1449-1458, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33423550

ABSTRACT

Hallmark features of myelofibrosis (MF) are cytopenias, constitutional symptoms and splenomegaly. Anemia and transfusion dependency are among the most important negative prognostic factors and are exacerbated by many JAK inhibitors (JAKi). Momelotinib (MMB) has been investigated in over 820 patients with MF and possesses a pharmacological and clinical profile differentiated from other JAKi by inhibition of JAK1, JAK2 and ACVR1. MMB is designed to address the complex drivers of iron-restricted anemia and chronic inflammation in MF and should improve constitutional symptoms and splenomegaly while maintaining or improving hemoglobin in JAKi-naive and previously JAKi-treated patients. The MOMENTUM Phase III study is designed to confirm and extend observations of safety and clinical activity of MMB.


Lay abstract The most important features of myelofibrosis (MF) are low blood cell counts and symptoms including tiredness, night sweats and itching, along with increased size of the spleen, which may cause a feeling of fullness and pain. Low red blood cell counts (anemia) may mean regular blood transfusions are needed and this is one of the signs MF is getting worse. Drugs called JAK inhibitors (JAKi) are available to treat MF, but can have a side effect of making blood cell counts lower. Momelotinib (MMB) is a different type of JAKi to the ones currently available, and is an experimental drug for MF. MMB is designed to treat symptoms and spleen like other JAKi, but also to improve blood cell counts. MMB has already been given to more than 820 patients with MF in other clinical studies. Some of the patients in these studies had been treated with different JAKi before, and others got MMB as their first JAKi treatment. The MOMENTUM Phase III study is designed to collect more information on the safety and effectiveness of MMB in MF.


Subject(s)
Benzamides/administration & dosage , Danazol/administration & dosage , Janus Kinase Inhibitors/administration & dosage , Primary Myelofibrosis/drug therapy , Pyrimidines/administration & dosage , Activin Receptors, Type I/antagonists & inhibitors , Administration, Oral , Adult , Benzamides/adverse effects , Clinical Trials, Phase III as Topic , Danazol/adverse effects , Double-Blind Method , Female , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/adverse effects , Male , Middle Aged , Pyrimidines/adverse effects , Randomized Controlled Trials as Topic , Self Administration , Treatment Outcome
11.
N Engl J Med ; 375(21): 2023-2036, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27959731

ABSTRACT

BACKGROUND: The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS: We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS: Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS: Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Azacitidine/analogs & derivatives , Bone Marrow/pathology , Leukemia, Myeloid, Acute/drug therapy , Mutation , Myelodysplastic Syndromes/drug therapy , Tumor Suppressor Protein p53/genetics , 5-Methylcytosine/analysis , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Azacitidine/administration & dosage , Azacitidine/adverse effects , Biomarkers, Tumor/analysis , Bone Marrow/chemistry , Decitabine , Exome , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Prospective Studies , Risk Factors , Survival Rate
14.
Br J Haematol ; 176(6): 939-949, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28220932

ABSTRACT

Simtuzumab, a monoclonal antibody inhibitor of extracellular matrix enzyme lysyl oxidase-like-2, showed preclinical promise and was well tolerated in clinical studies. A phase 2, open-label study of simtuzumab was conducted in patients with primary myelofibrosis (MF), post-polycythaemia vera MF and post-essential thrombocythaemia MF. Fifty-four patients were randomized to receive simtuzumab alone (200 or 700 mg [n = 12 each group]) or simtuzumab (200 or 700 mg) with ruxolitinib (n = 15 each group) for 24 weeks. Simtuzumab alone or in combination with ruxolitinib showed no clinical benefit at 24 weeks. The mean serum simtuzumab trough concentrations appeared to increase dose-proportionally between the 200-mg and 700-mg treatment groups. Therapy-related serious adverse events were pyrexia, pain in extremity (both in 1 patient) and infusion reaction (in another patient). Bone marrow fibrosis (BMF) score was reduced at 24 weeks in 2 patients (16·7%) in the simtuzumab 700-mg group, 1 (6·7%) in the simtuzumab 200-mg + ruxolitinib group, and 2 (13·3%) in the simtuzumab 700-mg + ruxolitinib group; similar numbers of patients had increased BMF. Simtuzumab alone or with ruxolitinib was well tolerated but did not produce clinical benefit nor consistently reduce BMF in patients with MF by 24 weeks.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Polycythemia Vera/pathology , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/drug therapy , Protein Kinase Inhibitors/therapeutic use , Thrombocythemia, Essential/pathology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/pharmacology , Biopsy , Bone Marrow/pathology , Disease Progression , Drug Administration Schedule , Female , Humans , Janus Kinase 2/antagonists & inhibitors , Male , Middle Aged , Primary Myelofibrosis/etiology , Protein Kinase Inhibitors/pharmacology , Treatment Outcome
16.
N Engl J Med ; 368(19): 1781-90, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23656643

ABSTRACT

BACKGROUND: The molecular causes of many hematologic cancers remain unclear. Among these cancers are chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (CML), both of which are diagnosed on the basis of neoplastic expansion of granulocytic cells and exclusion of genetic drivers that are known to occur in other myeloproliferative neoplasms and myeloproliferative-myelodysplastic overlap neoplasms. METHODS: To identify potential genetic drivers in these disorders, we used an integrated approach of deep sequencing coupled with the screening of primary leukemia cells obtained from patients with CNL or atypical CML against panels of tyrosine kinase-specific small interfering RNAs or small-molecule kinase inhibitors. We validated candidate oncogenes using in vitro transformation assays, and drug sensitivities were validated with the use of assays of primary-cell colonies. RESULTS: We identified activating mutations in the gene encoding the receptor for colony-stimulating factor 3 (CSF3R) in 16 of 27 patients (59%) with CNL or atypical CML. These mutations segregate within two distinct regions of CSF3R and lead to preferential downstream kinase signaling through SRC family-TNK2 or JAK kinases and differential sensitivity to kinase inhibitors. A patient with CNL carrying a JAK-activating CSF3R mutation had marked clinical improvement after the administration of the JAK1/2 inhibitor ruxolitinib. CONCLUSIONS: Mutations in CSF3R are common in patients with CNL or atypical CML and represent a potentially useful criterion for diagnosing these neoplasms. (Funded by the Leukemia and Lymphoma Society and others.).


Subject(s)
Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics , Leukemia, Neutrophilic, Chronic/genetics , Mutation , Receptors, Colony-Stimulating Factor/genetics , Animals , Humans , Janus Kinases/antagonists & inhibitors , Leukemia, Lymphoid/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis , Leukemia, Neutrophilic, Chronic/diagnosis , Mice , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA, Small Interfering , Signal Transduction/physiology
17.
J Natl Compr Canc Netw ; 13(4): 424-34, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25870379

ABSTRACT

The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), which include essential thrombocythemia, polycythemia vera, and myelofibrosis (MF), are in a new era of molecular diagnosis, ushered in by the identification of the JAK2(V617F) and cMPL mutations in 2005 and 2006, respectively, and the CALR mutations in 2013. Coupled with increased knowledge of disease pathogenesis and refined diagnostic criteria and prognostic scoring systems, a more nuanced appreciation has emerged of the burden of MPN in the United States, including the prevalence, symptom burden, and impact on quality of life. Biological advances in MPN have translated into the rapid development of novel therapeutics, culminating in the approval of the first treatment for MF, the JAK1/JAK2 inhibitor ruxolitinib. However, certain practical aspects of care, such as those regarding diagnosis, prevention of vascular events, choice of cytoreductive agent, and planning for therapies, present challenges for hematologists/oncologists, and are discussed in this article.


Subject(s)
Polycythemia Vera/genetics , Polycythemia Vera/therapy , Primary Myelofibrosis/genetics , Primary Myelofibrosis/therapy , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/therapy , Antineoplastic Agents/therapeutic use , Calreticulin/genetics , Hematopoietic Stem Cell Transplantation , Humans , Hydroxyurea/therapeutic use , Janus Kinase 2/genetics , Janus Kinases/antagonists & inhibitors , Polycythemia Vera/diagnosis , Primary Myelofibrosis/diagnosis , Protein Kinase Inhibitors/therapeutic use , Receptors, Thrombopoietin/genetics , Splenomegaly/etiology , Splenomegaly/therapy , Thrombocythemia, Essential/diagnosis , Thrombosis/etiology , Thrombosis/prevention & control
19.
Ther Adv Hematol ; 15: 20406207241237607, 2024.
Article in English | MEDLINE | ID: mdl-38481947

ABSTRACT

Janus kinase 2 (JAK2) inhibitors such as ruxolitinib have become standard-of-care therapy for patients with myeloproliferative neoplasms (MPNs); however, activation of alternate oncogenic pathways including nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) has limited durable response as single-agent therapy. With the rationale of targeting both pathways, we conducted a phase I dose escalation trial of pevonedistat in combination with ruxolitinib for the treatment of patients with myelofibrosis (NCT03386214). The primary objective was to assess the safety and tolerability of combination therapy with additional objectives of treatment efficacy and alterations of biomarkers. There were no dose-limiting toxicities observed with most adverse events being limited to grades 1/2. In secondary measures, anemia response was observed in two patients. Pro-inflammatory cytokines and iron parameters were longitudinally assessed, which revealed suppression of interleukin-6 and interferon-gamma in a dose-dependent manner across a subset of patients. These results suggest that combination therapy targeting both JAK2 and NFκB may hold clinical merit for MPN patients.

20.
Exp Hematol ; 132: 104178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340948

ABSTRACT

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Erythropoiesis/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Signal Transduction , Mutation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Nuclear Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL