ABSTRACT
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aß), and Aß-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aß, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Subject(s)
Alzheimer Disease , Antioxidants , Plant Extracts , Animals , Mice , Alzheimer Disease/drug therapy , AMP-Activated Protein Kinases/metabolism , Amyloid beta-Peptides/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal TransductionABSTRACT
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is a chronic gastrointestinal inflammatory disease with unclear etiology and pathophysiology. Herein, we determined the effects of extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) on tight junction protein expression, inflammation, and apoptosis in a dextran sodium sulfate (DSS)-induced acute colitis model. Fifty mice were divided into normal, DSS, DSS + Polycan 250 mg/kg (Polycan 250), DSS + Polycan 500 mg/kg (Polycan 500), and DSS + 5-aminosalicylic acid 100 mg/kg (5-ASA) groups. Their body weights, colon lengths, histological changes in colon tissue, and tight junction function were observed. Results showed that Polycan 250, Polycan 500, and 5-ASA significantly inhibited body weight loss compared with DSS. Similar to 5-ASA, Polycan 500 exhibited preventive effects on colon length shortening and histological changes in colon tissues. Polycan inhibited the DSS-induced decrease in fluorescein isothiocyanate-dextran permeability and myeloperoxidase activity. Moreover, Polycan significantly recovered serum cytokine (e.g., tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) or mRNA expression in colon tissue compared with DSS. Polycan also inhibited apoptosis by reducing caspase-3 activity and the Bcl-2 associated X/B-cell lymphoma 2 (Bcl-2) ratio. Additionally, DSS treatment significantly reduced microbial abundance and diversity, but the administration of Polycan reversed this effect. Collectively, Polycan protected intestinal barrier function and inhibited inflammation and apoptosis in DSS-induced colitis.
Subject(s)
Colitis, Ulcerative , Colitis , beta-Glucans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Dextrans/metabolism , Glucans/pharmacology , Glucans/metabolism , beta-Glucans/pharmacology , beta-Glucans/metabolism , Colitis/pathology , Colon/pathology , Inflammation/metabolism , Interleukin-6/metabolism , Mesalamine , Proto-Oncogene Proteins c-bcl-2/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BLABSTRACT
Purpose: The present study aimed to determine whether the administration of Acer palmatum thumb. leaf extract (KIOM-2015E) protects against the degeneration of rat retinal ganglion cells after ischemia/reperfusion (I/R) induced by midbrain cerebral artery occlusion (MCAO). Methods: Sprague-Dawley rats were subjected to 90 min of MCAO, which produces transient ischemia in both the retina and brain due to the use of an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. This was followed by reperfusion under anesthesia with isoflurane. The day after surgery, the eyes were treated three times (eye drop) or one time (oral administration) daily with KIOM-2015E for five days. Retinal histology was assessed in flat mounts and vertical sections to determine the effect of KIOM-2015E on I/R injury. Results: A significant loss of brain-specific homeobox/POU domain protein 3A (Brn3a) and neuron-specific class III beta-tubulin (Tuj-1) fluorescence and a marked increase in glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) expression were observed after five days in the PBS-treated MCAO group compared to the sham-operated control group. However, KIOM-2015E treatment reduced (1) MCAO-induced upregulation of GFAP and GS, (2) retinal ganglion cell loss, (3) nerve fiber degeneration, and (4) the number of TUNEL-positive cells. KIOM-2015E application also increased staining for parvalbumin (a marker of horizontal cell associated calcium-binding protein and amacrine cells) and recoverin (a marker of photoreceptor expression) in rats subjected to MCAO-induced retinal damage. Conclusions: Our findings indicated that KIOM-2015E treatment exerted protective effects against retinal damage following MCAO injury and that this extract may aid in the development of novel therapeutic strategies for retinal diseases, such as glaucoma and age-related macular disease.
Subject(s)
Acer/metabolism , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Reperfusion Injury/metabolism , Retinal Degeneration/prevention & control , Retinal Ganglion Cells/drug effects , Acer/chemistry , Animals , Chromatography, High Pressure Liquid , Down-Regulation , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Ammonia Ligase/metabolism , Male , Nerve Fibers/pathology , Plant Leaves/chemistry , Plant Leaves/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/complications , Reperfusion Injury/mortality , Retinal Degeneration/complications , Retinal Degeneration/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/pathology , Transcription Factor Brn-3B/metabolism , Tubulin/metabolism , Up-RegulationABSTRACT
This study is aimed at determining whether Sesamum indicum Linn. beneficially influences FcεRI-mediated allergic reactions in RBL-2H3 mast cells; it is also aimed at further investigating Lyn/Fyn and Syk signaling pathways. To examine the antiallergic effect of Sesamum indicum Linn. extract (SIE), we treated antigen/immunoglobulin E- (IgE-) sensitized mast cells with extracts of various concentrations. We examined the degranulation release and concentrations of inflammatory mediators. Additionally, the expressions of genes involved in the FcεRI and arachidonate signaling pathways were examined. SIE inhibited the degranulation and secretion of inflammatory mediators in antigen/IgE-sensitized mast cells. SIE reduced the expressions of FcεRI signaling-related genes, such as Syk, Lyn, and Fyn, and the phosphorylation of extracellular signal-regulated kinase in antigen/IgE-sensitized mast cells. Additionally, in late allergic responses, SIE reduced PGD2 release and COX-2 and cPLA2 phosphorylation expression in FcεRI-mediated mast cell activation. Lastly, 250-500 mg/kg SIE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. The potent effect of SIE on RBL-2H3 mast cell activation indicates that the extract could potentially be used as a novel inhibitor against allergic reactions.
Subject(s)
Hypersensitivity/drug therapy , Plant Extracts/therapeutic use , Sesamum/chemistry , Animals , Blotting, Western , Cell Line , Cell Survival/drug effects , Ethanol , Hypersensitivity/metabolism , Male , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Rats , Signal Transduction/drug effectsABSTRACT
BACKGROUND: Recent research has suggested that autophagy can provide a better mechanism for inducing cell death than current therapeutic strategies. This study investigated the effects of using an ethanol extract of Chrysanthemum zawadskii Herbich (ECZ) to induce apoptosis and autophagy associated with reliable signal pathways in mouse colon cancer CT-26 cells. METHODS: Using ECZ on mouse colon cancer CT-26 cells, cell viability, annexin V/propidium iodide staining, acridine orange staining, reactive oxygen species (ROS) and western blotting were assayed. RESULTS: ECZ exhibited cytotoxicity in CT-26 cells in a dose-dependent manner. ECZ induced apoptosis was confirmed by caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and increased production of reactive oxygen species (ROS). Furthermore, it was shown that ECZ induced autophagy via the increased conversion of microtubule-associated protein 1 light chain 3II, the degradation of p62, and the formation of acidic vesicular organelles. The inhibition of ROS production by N-Acetyl-L-cysteine resulted in reduced ECZ-induced apoptosis and autophagy. Furthermore, the inhibition of autophagy by 3-methyladenine resulted in enhanced ECZ-induced apoptosis via increased ROS generation. CONCLUSION: These findings confirmed that ECZ induced ROS-mediated autophagy and apoptosis in colon cancer cells. Therefore, ECZ may serve as a novel potential chemotherapeutic candidate for colon cancer.
Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Chrysanthemum/chemistry , Colonic Neoplasms/physiopathology , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Animals , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Humans , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Plant Extracts/isolation & purification , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolismABSTRACT
Salinomycin, a monocarboxylic ionophore in Streptomyces albus, has been studied as an anti-cancer agent. However, we wondered whether salinomycin has another effect such as an anti-oxidant and hepatic protectant, because some chemical drugs treating human diseases were sometimes related with their toxic effects. Therefore, this study was conducted to examine the effects of salinomycin against oxidative stress and mitochondrial impairment in vivo and in vitro as well as the cellular mechanisms of action. In hepatocyte, salinomycin inhibited arachidonic acid (AA)â¯+â¯iron-induced apoptosis, mitochondrial dysfunction and ROS production. As a molecular mechanism, salinomycin induced autophagy through AMP-activated protein kinase (AMPK) activation, as assessed by the accumulation of acidic vesicle organelles, p62 and LC3-II. Moreover, these protective effects were blocked by AMPK inhibition, which indicates the importance of AMPK in the process of salinomycin's effects. In mice, oral administration of salinomycin protected against carbon tetrachloride (CCl4)-induced oxidative stress and liver injury, and also activated AMPK as well as autophagy-related proteins in the liver. Collectively, salinomycin had the ability to protect hepatocytes against AA+iron-induced reactive oxygen species production and mitochondrial dysfunction, as well as CCl4-induced liver injury. Although this beneficial effect was demonstrated under severe oxidative stress, this study showed that salinomycin protected the liver against the oxidative stress and liver damage through AMPK and autophagy, and suggest that salinomycin has a possibility to treat a broad range of diseases.
Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Liver Diseases/drug therapy , Oxidative Stress/drug effects , Pyrans/pharmacology , Animals , Apoptosis/drug effects , Arachidonic Acid/pharmacology , Carbon Tetrachloride/pharmacology , Cell Line, Tumor , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/drug effects , Liver/metabolism , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Reactive Oxygen Species/metabolismABSTRACT
Davallia mariesii Moore (Drynaria rhizome extract (DRE)) is widely known for its efficacy in treating inflammation, arteriosclerosis, and bone injuries. This study evaluated whether treatment with DRE inhibited FcÉRI-mediated allergic responses in the RBL-2H3 mast cells and investigated the early- and late-phase mechanisms by which DRE exerts its antiallergic effects. IgE anti-DNP/DNP-HSA-sensitized RBL-2H3 mast cells were tested for cytotoxicity to DRE, followed by the assessment of ß-hexosaminidase release. We measured the amounts of inflammatory mediators (e.g., histamine, PGD2, TNF-α, IL-4, and IL-6) and examined the expression of genes involved in arachidonate and FcεRI signaling pathways. In addition, we confirmed the antiallergic effects of DRE on passive cutaneous anaphylaxis (PCA) in mice. DRE inhibited RBL-2H3 mast cell degranulation and production of allergic mediators in them. In early allergic responses, DRE reduced expression of FcεRI signaling-related genes (e.g., Syk, Lyn, and Fyn) and extracellular signal-regulated kinase phosphorylation in mast cells. In late allergic responses, DRE reduced PGD2 release and COX-2 expression and cPLA2 phosphorylation in FcÉRI-mediated mast cells. Lastly, 250-500 mg/kg DRE significantly attenuated the IgE-induced PCA reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergic effects of DRE in FcÉRI-mediated allergic responses.
Subject(s)
Anti-Allergic Agents/therapeutic use , Mast Cells/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Polypodiaceae/chemistry , Receptors, IgE/metabolism , Animals , Anti-Allergic Agents/chemistry , Cell Line , Cell Survival/drug effects , Histamine/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Male , Mast Cells/drug effects , Mice , Passive Cutaneous Anaphylaxis/drug effects , Plants, Medicinal/chemistry , Prostaglandin D2/metabolism , Rats , Receptors, IgE/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
BACKGROUND: Salmonella enterica serovar Typhimurium is a foodborne pathogen that triggers inflammatory responses in the intestines of humans and livestock. Colla corii asini is a traditional medicine used to treat gynecologic and chronic diseases in Korea and China. However, the antibacterial activity of Colla corii asini has been unknown. In this study, we investigated the antibacterial activity and effects of Colla corii asini extract on Salmonella typhimurium invasion. METHODS: To tested for antibacterial effects of Colla corii asini extracts, we confirmed the agar diffusion using Luria solid broth medium. Also, we determined the MIC (minimum inhibitory concentration) and the MBC (minimum bactericidal concentration) value of the Colla corii asini ethanol extract (CEE) by using two-fold serial dilution methods. We evaluated the expression of salmonella invasion proteins including SipA, SipB and SipC by using Western blot and qPCR at the concentration of CEE without inhibition of bacterial growth. In vitro and vivo, we determined the inhibitory effect of invasion of S. typhimurium on CEE by using gentamicin assay and S. typhimurium-infected mice. RESULTS: CEE significantly inhibited the growth of Salmonella typhimurium in an agar diffuse assay and had an MIC of 0.78 mg/ml and an MBC of 1.56 mg/ml. Additionally, CEE reduced Salmonella typhimurium cell invasion via the inhibition of Salmonella typhimurium invasion proteins, such as SipA, SipB and SipC. Furthermore, CEE significantly suppressed invasion in the small intestines (ilea) of mice injected with Salmonella typhimurium. CONCLUSION: These findings show that Colla corii asini exerts antibacterial activity and suppresses Salmonella typhimurium invasion in vitro and in vivo. Together, these findings demonstrate that Colla corii asini is a potentially useful therapeutic herbal medicine for treating salmonella-mediated diseases.
Subject(s)
Anti-Bacterial Agents/pharmacology , Gelatin/pharmacology , Salmonella typhimurium/drug effects , Amino Acids/analysis , Amino Acids/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gelatin/chemistry , HumansABSTRACT
Microglia activation plays an important role in neuroinflammation and contributes to several neurological disorders. Hence, inhibition of both microglia activation and pro-inflammatory cytokines may lead to the effective treatment of neurodegenerative diseases. In this study, we found that GRh2 inhibited the inflammatory response to lipopolysaccharide (LPS) and prevented the LPS-induced neurotoxicity in microglia cells. GRh2 significantly decreased the generation of nitric oxide production, and tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, cyclooxygenase-2 and inducible nitric oxide synthase in LPS-induced activated microglia cells. Furthermore, GRh2 (20 and 50 µM) significantly increased TGF-ß1 expression and reduced the expression of Smad. These results suggest that GRh2 effectively inhibits microglia activation and production of pro-inflammatory cytokines via modulating the TGF-ß1/Smad pathway.
Subject(s)
Ginsenosides/pharmacology , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Microglia/drug effects , Neuroprotective Agents/pharmacology , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cell Line , Cyclooxygenase 2/biosynthesis , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Mice , Microglia/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/biosynthesis , Signal Transduction , Tumor Necrosis Factor-alpha/biosynthesisABSTRACT
BACKGROUND: In this study, we investigated the neuroprotective effect of the hairy root extract of Angelica gigas NAKAI (Angelica Gigantis Radix) on transient focal cerebral ischemia in rats through the regulation of angiogenesis molecules. METHODS: Male Sprague-Dawley rats were induced focal cerebral ischemia by a transient middle cerebral artery occlusion (tMCAO) for 90 min, and then orally administrated with the water extract of A. gigas hairy roots (AG). After 24 h reperfusion, infarction volume and the changes of BBB permeability were measured by TTC and Evans Blue (EB) staining. The neuronal cell damage and the activation of glial cells were assessed by immunohistochemistry in the ischemic brain. The expression of angiogenesis-induced proteins such as angiopoietin-1 (Ang-1), and vascular endothelial growth factor (VEGF), inflammatory protein such as intercellular adhesion molecule-1 (CAM-1), tight junction proteins such as ZO-1, and Occludin and the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT were determined in the ischemic brains by Western blot, respectively. RESULTS: The treatment of AG extract significantly decreased the volumes of brain infarction, and edema in MACO-induced ischemic rats. AG extract decreased the increase of BBB permeability, and neuronal death and inhibited the activation of astrocytes and microglia in ischemic brains. AG extract also significantly increased the expression of Ang-1, Tie-2, VEGF, ZO-1 and Occludin through activation of the PI3K/Akt pathway. AG extract significantly increased the expression of ICAM-1 in ischemic brains. CONCLUSIONS: Our results indicate that the hairy root of AG has a neuroprotective effect in ischemic stroke.
Subject(s)
Angelica , Angiopoietin-1/metabolism , Ischemic Attack, Transient/drug therapy , Neovascularization, Physiologic/drug effects , Neuroprotective Agents/therapeutic use , Phytotherapy , Stroke/metabolism , Animals , Astrocytes , Blood-Brain Barrier/drug effects , Brain/metabolism , Cerebral Infarction/prevention & control , Infarction, Middle Cerebral Artery/drug therapy , Intercellular Adhesion Molecule-1/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Attack, Transient/pathology , Male , Neuroprotective Agents/pharmacology , Occludin/metabolism , Permeability , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Sprague-Dawley , Stroke/drug therapy , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Image steganalysis is the task of detecting a secret message hidden in an image. Deep steganalysis using end-to-end deep learning has been successful in recent years, but previous studies focused on improving detection performance rather than designing a lightweight model for practical applications. This caused a deep steganalysis model to be heavy and computationally costly, making the model infeasible to deploy in real-world applications. To address this issue, we study an effective model design strategy for lightweight image steganalysis. Considering the domain-specific characteristics of steganalysis, we propose a simple yet effective block removal strategy that progressively removes a sequence of blocks from deep classification networks. This method involves the gradual removal of convolutional neural network blocks, starting from deeper ones. By doing so, the number of parameters and FLOPs are decreased without compromising the detection performance. Experimental results show that our removal strategy makes the EfficientNet-B0 variants 9.58 [Formula: see text] smaller and has 2.16 [Formula: see text] fewer FLOPs than the baseline while retaining detection accuracy of 90.73% and 82.40% that are on par with the baseline on BOSSBase and ALASKA#2 datasets, respectively. Backed by our in-depth analyses, the results indicate that only a few early layers are sufficient for effective image steganalysis.
ABSTRACT
Ulcerative colitis (UC) is an inflammatory bowel disease caused by various factors, including intestinal inflammation and barrier dysfunction. Herein, we determined the effects of fermented glutinous rice (FGR) on the expression of tight junction proteins and levels of inflammation and apoptosis in the dextran sodium sulfate (DSS)-induced acute colitis model. FGR was orally administered once per day to C57BL/6J mice with colitis induced by 5% DSS in drinking water. FGR administration recovered DSS-induced body weight loss and irregularly short colon lengths. FGR inhibited the DSS-induced decrease in FITC-dextran (FD)-4 permeability and myeloperoxidase activity. Moreover, FGR treatment repaired the reduction of zonula occluden-1 (ZO-1) and occludin expression and the increase in claudin-2 expression in colonic tissue relative to that following DSS administration. FGR treatment significantly recovered expression of cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß, in serum or respective mRNA expression in colonic tissue relative to that following DSS administration. FGR regulated levels of oxidative stress-related factors, such as malondialdehyde and glutathione, and the activity of catalase and superoxide dismutase in the colon tissue of the DSS-induced acute colitis mice model. Furthermore, FGR treatment inhibited apoptosis by reducing the activity of caspase-3 and the ratio of Bcl-2 associated X (Bax)/B-cell lymphoma 2 (Bcl-2). Collectively, FGR treatment protected the intestinal barrier from dysfunction and inhibited inflammation and apoptosis in DSS-induced colitis. Therefore, FGR may decrease the inflammatory response and be a candidate for treating and prevention inflammatory bowel disease by protecting the intestinal integrity.
ABSTRACT
BACKGROUND: The ingestion of flavonoids has been reported to be associated with reduced cardiovascular disease risk. Quercitrin is a common flavonoid in nature, and it exhibits antioxidant properties. Although the process of thrombogenesis is intimately related to cardiovascular disease risk, it is unclear whether quercitrin plays a role in thrombogenesis. PURPOSE: The aim of this study was to examine the antiplatelet effect of quercitrin in platelet activation. METHODS: Platelet aggregation, granule secretion, calcium mobilization, and integrin activation were used to assess the antiplatelet activity of quercitrin. Antithrombotic effect was determined in mouse using ferric chloride (FeCl3)-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro. Transection tail bleeding time was used to evaluate whether quercitrin inhibited primary hemostasis. RESULTS: Quercitrin significantly impaired collagen-related peptide-induced platelet aggregation, granule secretion, reactive oxygen species generation, and intracellular calcium mobilization. Outside-in signaling of αIIbß3 integrin was significantly inhibited by quercitrin in a concentration-dependent manner. The inhibitory effect of quercitrin resulted from inhibition of the glycoprotein VI-mediated platelet signal transduction during cell activation. Further, the antioxidant effect is derived from decreased phosphorylation of components of the TNF receptor-associated factor 4/p47phox/Hic5 axis signalosome. Oral administration of quercitrin efficiently blocked FeCl3-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro, without prolonging bleeding time. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that treatment with quercitrin reduced the infarct volume in stroke. CONCLUSIONS: Our results demonstrated that quercitrin could be an effective therapeutic agent for the treatment of thrombotic diseases.
Subject(s)
Fibrinolytic Agents/pharmacology , Hemostasis/drug effects , Quercetin/analogs & derivatives , Thrombosis/drug therapy , Adenosine Triphosphate/metabolism , Animals , Arteries , Calcium/metabolism , Dose-Response Relationship, Drug , Humans , Male , Mice, Inbred C57BL , Phosphorylation/drug effects , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoproteins/metabolism , Quercetin/adverse effects , Quercetin/pharmacology , Reperfusion Injury/chemically induced , Thrombosis/chemically induced , Thrombosis/metabolismABSTRACT
Psychological stress (PS) plays a significant role as an aggravating factor in atopic dermatitis (AD). The traditional medicine prescription, Gyogamdan, has been used to treat chest discomfort and mood disorders caused by PS. This study investigated the effects of an ethanolic extract of Gyogamdan (GGDE) on stress-associated AD models and the underlying mechanisms. 2,4-Dinitrochlorobenzene- (DNCB-) treated BALB/c mice were exposed to social isolation (SI) stress. The effects of orally administered GGDE (100 or 500 mg/kg) were evaluated by ELISA, western blotting, and an open field test (OFT). SI stress exaggerated the skin inflammation and induced locomotor hyperactivity in the AD mouse model. GGDE reduced the levels of IgE, TNF-α, IL-13, eotaxin, and VEGF and mast cell/eosinophil infiltration and prevented the decreases in the levels of involucrin and loricrin in the skin. GGDE also suppressed the SI-induced increases in corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in socially isolated AD mice. Furthermore, GGDE reduced traveling distances and mean speed significantly in the OFT. The in vitro experiments were performed using HaCaT, HMC-1, PC12, and BV2 cells. In the TNF-α/IFN-γ- (TI-) stimulated HaCaT cells, GGDE decreased the thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) production significantly by inhibiting p-STAT1 and NF-κB signaling. GGDE also reduced VEGF production in HMC-1 cells stimulated with CRH/substance P (SP) by inhibiting p-ERK signaling pathway. GGDE increased the cell viability significantly and suppressed apoptosis in CORT-stimulated PC12 cells. Moreover, GGDE suppressed the LPS-induced production of NO, TNF-α, IL-1ß, and IL-6 in BV2 cells. These results suggest that GGDE might be useful in patients with AD, which is exacerbated by PS.
ABSTRACT
Forsythiae Fructus, Lonicerae Flos, and Scutellariae Radix are medicinal herbs that possess anti-inflammatory and anti-atopic effects. Hence, we investigated the effects of a mixture (ADM), containing arctigenin, hederagenin, and baicalein, which are the main compound from these herbs on atopic dermatitis (AD) skin lesions and the underlying molecular mechanisms. ADM was topically applied to dorsal skin lesions of 2,4-dinitrochlorobenzene- (DNCB-) induced ICR mice, and the expressions of proinflammatory mediators and HPA axis hormones were investigated. The topical application of 0.5% ADM significantly reduced the DNCB-induced symptoms of AD in ICR mice. Histological analysis showed that ADM exerted antiatopic effects by reducing the epidermal thickness and mast cell infiltration into skin lesions. 0.5% ADM attenuated the levels of TNF-α, IFN-γ, IL-4, and VEGF in skin lesions and serum IgE. The production of Th1-/Th2-related cytokines in splenic tissues, including TNF-α, IFN-γ, IL-12, and IL-4, were also decreased by ADM treatment. ADM diminished corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosteroid (CORT) production in DNCB-induced mice. In vitro, ADM reduced the productions of TARC/CCL17, MDC/CCL22, IL-6, and ICAM-1 in TNF-α/IFN-γ- (TI-) stimulated HaCaT cells by suppressing the ERK and JNK signaling pathways. In addition, ADM inhibited corticotropin-releasing hormone/substance P- (CRH/SP-) induced VEGF production in HMC-1 cells. These results suggest that ADM may have therapeutic potential in AD by reducing inflammation and attenuating HPA axis activation.
ABSTRACT
Rheum undulatum and Glycyrrhiza uralensis have been used as supplementary ingredients in various herbal medicines. They have been reported to have anti-inflammatory and antioxidant effects and, therefore, have potential in the treatment and prevention of various liver diseases. Considering that hepatic encephalopathy (HE) is often associated with chronic liver failure, we investigated whether an R. undulatum and G. uralensis extract mixture (RG) could reduce HE. We applied systems-based pharmacological tools to identify the active ingredients in RG and the pharmacological targets of RG by examining mechanism-of-action profiles. A CCl4-induced HE mouse model was used to investigate the therapeutic mechanisms of RG on HE. We successfully identified seven bioactive ingredients in RG with 40 potential targets. Based on an integrated target-disease network, RG was predicted to be effective in treating neurological diseases. In animal models, RG consistently relieved HE symptoms by protecting blood-brain barrier permeability via downregulation of matrix metalloproteinase-9 (MMP-9) and upregulation of claudin-5. In addition, RG inhibited mRNA expression levels of both interleukin (IL)-1ß and transforming growth factor (TGF)-ß1. Based on our results, RG is expected to function various biochemical processes involving neuroinflammation, suggesting that RG may be considered a therapeutic agent for treating not only chronic liver disease but also HE.
Subject(s)
Fabaceae/chemistry , Hepatic Encephalopathy/drug therapy , Liver Failure/drug therapy , Plant Extracts/pharmacology , Rheum/chemistry , Animals , Disease Models, Animal , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/pathology , Liver Failure/complications , Liver Failure/pathology , Male , Mice , Mice, Inbred BALB C , Plant Extracts/chemistryABSTRACT
Immune checkpoint inhibitors, increasingly used to treat malignant tumors, are revolutionizing cancer treatment by improving the patient survival expectations. Despite the high antitumor efficacy of antibody therapeutics that bind to PD-1/PD-L1, study on small molecule-based PD-1/PD-L1 inhibitors is required to overcome the side effects of antibody therapeutics caused by their size and affinity. Herein, we investigated antitumor potential of Salvia plebeia R. Br. extract (SPE), which has been used as a traditional oriental medicine and food in many countries, and its components by the blockade of PD-1/PD-L1 interaction. SPE and its component cosmosiin effectively blocked the molecular interaction between PD-1 and PD-L1. SPE also inhibited tumor growth by increasing CD8+ T-cells in the tumor through the activation of tumor-specific T-cells in a humanized PD-1 mouse model bearing hPD-L1 knock-in MC38 colon adenocarcinoma tumor. This finding presents a preclinical strategy to develop small molecule-based anticancer drugs targeting the PD-1/PD-L1 immune checkpoint pathway.
Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Salvia/chemistry , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Biomarkers , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Humans , Ligands , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Transgenic , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/immunologyABSTRACT
Lycopus lucidus Turcz. ex Benth (LT) has been broadly used as a traditional medicinal herb in Asia including Korea, China, and Japan due to its noted ability to promote blood circulation and remove blood stasis. However, its anticancer mechanism is not understood. This study aims to elucidate the effects of ethanol extracts of LT (ELT) relative to the role of Runt-related transcription factor- (Runx-) 2 in the invasive and metastatic potentials of mouse colon cancer to determine the underlying mechanisms involved. ELT was evaluated for the antimetastasis activity using CT-26 colon cancer using wound healing, transwell matrigel, and western blot analysis. We used Runx-2-specific siRNA to further determine the relationship between Runx-2 and matrix metalloprotease- (MMP-) 9 in the migration and invasion of CT-26 cells. Runx-2 was first demonstrated to be a transcription factor that plays a remarkable role in diverse biological processes of chondrocytes and osteoblasts, but recently, Runx-2 has been reported to be associated with the progression of certain human cancers. ELT was not altered in its effects on growth inhibition. However, ELT significantly inhibited wound closure and cell invasion in a dose-dependent manner. ELT decreased the metastasis by regulating the activity of MMP-9 and Runx-2 at the translational levels. Our results demonstrate that ELT decreases metastasis by inhibiting the Runx-2-MMP-9 axis. We suggest that it can be used as a novel agent in therapeutic strategies for combating colon cancer.
ABSTRACT
BACKGROUND: In the East Asia, the genus Acer (Aceraceae) is a herbal medicine that is used to treat various diseases, including hemostasis, hepatic disorders, traumatic bleeding and poor eyesight. However, the effects of Acer palmatum thumb. on retinal degeneration are unknown. AIM: In this study, we investigated whether Acer palmatum thumb.ethanol extract (KIOM-2015E) can protect eyes from retinal degeneration. Our research investigated whether KIOM-2015E could have a protective effect in the retinal degenerating mouse model induced by N-ethyl-N-nitrosourea (ENU). MATERIALS AND METHODS: Retinal degeneration was induced by a single intraperitoneal injection of ENU in ICR mice. KIOM-2015E (100, 200â¯mg/kg) was orally administered once per day. The eyeballs were embedded and lysed after drug administration to examine the histological changed and protein expression levels. RESULTS: The ENU-induced retinal degeneration model exhibited increased photoreceptor cell death and a loss of the outer nuclear layer. Additionally, the expression of PKCα and OPN1SW was reduced, and that of GFAP and Nestin was increased in ENU-treated retinal tissues. CONCLUSION: KIOM-2015E treatment ameliorated the ENU-induced retinal degeneration. KIOM-2015E prevents ENU-induced retinal degeneration by modulating protein expression and the thickness of the outer nuclear layer in the retina.