Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Anal Bioanal Chem ; 403(7): 1831-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22367245

ABSTRACT

1-Palmitoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 16:0/18:2-OOH) and 1-stearoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 18:0/18:2-OOH) were measured by liquid chromatography/mass spectrometry (LC/MS) using nonendogenous 1-palmitoyl-2-heptadecenoylphosphatidylcholine monohydroperoxide as an internal standard. The calibration curves for synthetic PC 16:0/18:2-OOH and PC 18:0/18:2-OOH, which were obtained by direct injection of the internal standard into the LC/MS system, were linear throughout the calibration range (0.8-12.8 pmol). Within-day and between-day coefficients of variation were less than 10%, and the recoveries were between 86% and 105%. The limit of detection (LOD) and the limit of quantification (LOQ) were determined using synthetic standards. The LOD (signal-to-noise ratio 3:1) was 0.01 pmol, and the LOQ (signal-to-noise ratio 6:1) was 0.08 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. With use of this method, the concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH in the lipoprotein fractions during copper-mediated oxidation were determined. We prepared oxLDL and oxHDL by incubating native LDL and native HDL from human plasma (n = 10) with CuSO(4) for up to 4 h. The time course of the PC 16:0/18:2-OOH and PC 18:0/18:2-OOH levels during oxidation consisted of three phases. For oxidized LDL, both compounds exhibited a slow lag phase and a subsequent rapidly increasing propagation phase, followed by a gradually decreasing degradation phase. In contrast, for oxidized HDL, both compounds initially exhibited a prompt propagation phase with a subsequent plateau phase, followed by a rapid degradation phase. The analytical LC/MS method for phosphatidylcholine hydroperoxides might be useful for the analysis of biological samples.


Subject(s)
Copper/chemistry , Lipoproteins, HDL/chemistry , Lipoproteins, LDL/chemistry , Phosphatidylcholines/analysis , Adult , Calibration , Chromatography, Liquid , Female , Humans , Limit of Detection , Male , Mass Spectrometry , Oxidation-Reduction , Reference Standards , Reproducibility of Results
2.
Anal Bioanal Chem ; 404(1): 101-12, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22710566

ABSTRACT

Oxidation of cholesteryl esters in lipoproteins by reactive oxygen species yields cholesteryl ester hydroperoxides (CEOOH). In this study, we developed a novel method for identification and characterization of CEOOH molecules in human lipoproteins by use of reversed-phase liquid chromatography with an hybrid linear ion trap-Orbitrap mass spectrometer (LC-LTQ Orbitrap). Electrospray ionization tandem mass spectrometric analysis was performed in both positive-ion and negative-ion modes. Identification of CEOOH molecules was completed by use of high-mass-accuracy (MA) mass spectrometric data obtained by using the spectrometer in Fourier-transform (FT) mode. Native low-density lipoproteins (nLDL) and native high-density lipoproteins (nHDL) from a healthy donor were oxidized by CuSO(4), furnishing oxidized LDL (oxLDL) and oxidized HDL (oxHDL). No CEOOH molecules were detected in the nLDL and the nHDL, whereas six CEOOH molecules were detected in the oxLDL and the oxHDL. In positive-ion mode, CEOOH was detected as [M + NH(4)](+) and [M + Na](+) ions. In negative-ion mode, CEOOH was detected as [M + CH(3)COO](-) ions. CEOOH were more easily ionized in positive-ion mode than in negative-ion mode. The LC-LTQ Orbitrap method was applied to human plasma and six species of CEOOH were detected. The limit of detection was 0.1 pmol (S/N = 5:1) for synthesized CEOOH.


Subject(s)
Cholesterol Esters/blood , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Mass Spectrometry/methods , Adult , Cholesterol Esters/chemistry , Female , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/chemistry , Middle Aged , Molecular Structure , Oxidation-Reduction
3.
J Agric Food Chem ; 60(3): 830-5, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22224848

ABSTRACT

Using an oxygen radical absorbance capacity (ORAC) assay, antioxidant activity was detected in the ethanol extract of the Pacific oyster, which was purified by sequential extraction with organic solvents. The ethyl acetate fraction showed the strongest antioxidant activity and was further purified, yielding a single compound [as assessed by thin-layer chromatography (TLC) and reverse-phase high-performance liquid chromatography (HPLC)]. This compound was identified as 3,5-dihydroxy-4-methoxybenzyl alcohol on the basis of (1)H and (13)C nuclear magnetic resonance (NMR), heteronuclear multiple-bond correlation (HMBC), and electrospray ionization-mass spectrometry (ESI-MS) spectral analyses, a conclusion that was confirmed by chemical synthesis. The concentration of the compound was 6.7 mg/100 g of whole oyster meat wet weight. This amphiphilic antioxidant retarded the copper-mediated oxidation of low-density lipoproteins (LDLs) and the generation of thiobarbituric acid reactive substances. Furthermore, the compound showed substantial antioxidant activity using the ORAC and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays compared to natural antioxidants. Although the same compound was previously found in brown algae, its presence in other organisms and antioxidant activity are reported here for the first time.


Subject(s)
Antioxidants/chemistry , Antioxidants/isolation & purification , Crassostrea/chemistry , Phenols/chemistry , Phenols/isolation & purification , Animals , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL