Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Regul Toxicol Pharmacol ; 113: 104619, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32088184

ABSTRACT

Combined use of photochemical and pharmacokinetic (PK) data for phototoxic risk assessment was previously proposed, and the system provided reliable phototoxic risk predictions of chemicals in same chemical series. This study aimed to verify the feasibility of the screening system for phototoxic risk assessment on dermally-applied chemicals with wide structural diversity, as a first attempt. Photochemical properties of test chemicals, 2-acetonaphthalene, 4'-methylbenzylidene camphor, 6-methylcoumarin, methyl N-methylanthranilate, and sulisobenzone, were evaluated in terms of UV absorption and reactive oxygen species (ROS) generation, and PK profiles of the test chemicals in rat skin were characterized after dermal co-application. All test chemicals showed strong UVA/B absorption with molar extinction coefficients of over 3000 M-1⋅cm-1, and irradiated 2-acetonaphthalene, 6-methylcoumarin, and methyl N-methylanthranilate exhibited significant ROS generation. Dermally-applied 2-acetonaphthalene and 4'-methylbenzylidene camphor indicated high and long-lasting skin deposition compared with the other test chemicals. Based on the photochemical and PK data, 2-acetonaphthalene was predicted to have potent phototoxic risk. The predicted phototoxic risk of the test chemicals by integration of obtained data was mostly consistent with their in vivo phototoxicity observed in rat skin. The screening strategy employing photochemical and PK data would have high prediction capacity and wide applicability for photosafety evaluation of chemicals.


Subject(s)
Benzophenones/toxicity , Camphor/analogs & derivatives , Coumarins/toxicity , Dermatitis, Phototoxic/metabolism , Naphthalenes/toxicity , Skin/drug effects , ortho-Aminobenzoates/toxicity , Administration, Cutaneous , Animals , Benzophenones/administration & dosage , Benzophenones/pharmacokinetics , Camphor/administration & dosage , Camphor/pharmacokinetics , Camphor/toxicity , Coumarins/administration & dosage , Coumarins/pharmacokinetics , Male , Molecular Structure , Naphthalenes/administration & dosage , Naphthalenes/pharmacokinetics , Photochemical Processes , Rats , Rats, Sprague-Dawley , Risk Assessment , Ultraviolet Rays , ortho-Aminobenzoates/administration & dosage , ortho-Aminobenzoates/pharmacokinetics
2.
J Pharmacol Exp Ther ; 354(2): 195-202, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26016852

ABSTRACT

This study aimed to qualify photosafety screening on the basis of photochemical and pharmacokinetic (PK) data on dermally applied chemicals. Six benzophenone derivatives (BZPs) were selected as model compounds, and in vitro photochemical/phototoxic characterization and dermal cassette-dosing PK study were carried out. For comparison, an in vivo phototoxicity test was also conducted. All of the BZPs exhibited strong UVA/UVB absorption with molar extinction coefficients of over 2000 M(-1) × cm(-1), and benzophenone and ketoprofen exhibited significant reactive oxygen species (ROS) generation upon exposure to simulated sunlight (about 2.0 mW/cm(2)); however, ROS generation from sulisobenzone and dioxybenzone was negligible. To verify in vitro phototoxicity, a 3T3 neutral red uptake phototoxicity test was carried out, and benzophenone and ketoprofen were categorized to be phototoxic chemicals. The dermal PK parameters of ketoprofen were indicative of the highest dermal distribution of all BZPs tested. On the basis of its in vitro photochemical/phototoxic and PK data, ketoprofen was deduced to be highly phototoxic. The rank of predicted phototoxic risk of BZPs on the basis of the proposed screening strategy was almost in agreement with the results from the in vivo phototoxicity test. The combined use of photochemical and cassette-dosing PK data would provide reliable predictions of phototoxic risk for candidates with high productivity.


Subject(s)
Benzophenones/pharmacokinetics , Benzophenones/toxicity , Dermatitis, Phototoxic/metabolism , Skin Absorption/drug effects , Administration, Cutaneous , Animals , Benzophenones/chemistry , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Risk Assessment , Skin Absorption/physiology
3.
Drug Metab Dispos ; 43(11): 1815-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26296710

ABSTRACT

Photoreactivity and dermal/ocular deposition of compounds have been recognized as key considerations for evaluating the phototoxic risk of compounds. Because some drugs are known to cause phototoxic reactions via generation of potent phototoxic metabolites, photosafety assessments on parent drugs alone may lead to false predictions about their photosafety. This study aimed to establish a new photosafety assessment strategy for evaluating the in vivo phototoxic potential of both a parent substance and its metabolites. The in vivo phototoxic risk of fenofibrate (FF) and its metabolites, fenofibric acid (FA) and reduced fenofibric acid, were evaluated based on photochemical and pharmacokinetic analyses. FF and FA exhibited intensive UV absorption, with molar extinction coefficient values of 17,000 (290 nm) and 14,000 M(-1)cm(-1) (295 nm), respectively. Superoxide generation from FA was significantly higher than from FF, and a marked increase in superoxide generation from FF was observed after incubation with rat hepatic S9 fractions, suggesting enhanced photoreactivity of FF after metabolism. FA showed high dermal/ocular deposition after oral administration (5 mg/kg, p.o.) although the concentration of FF was negligible, suggesting high exposure risk from FA. On the basis of these findings, FA was deduced to be a major contributor to phototoxicity induced by FF taken orally, and this prediction was in accordance with the results from in vitro/in vivo phototoxicity tests. Results from this study suggest that this new screening strategy for parent substances and their metabolites provides reliable photosafety information on drug candidates and would be useful for drug development with wide safety margins.


Subject(s)
Fenofibrate/metabolism , Fenofibrate/pharmacokinetics , Photochemical Processes/drug effects , Animals , BALB 3T3 Cells , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
4.
J Toxicol Sci ; 47(11): 483-492, 2022.
Article in English | MEDLINE | ID: mdl-36328538

ABSTRACT

A reactive oxygen species (ROS) assay has been widely used for photosafety assessment; however, the phototoxic potential of complex materials, including plant extracts, essential oils, and functional polymers, is unevaluable because of their undefined molecular weights. The present study was undertaken to modify the ROS assay protocol for evaluating phototoxic potentials of those materials with use of their apparent molecular weight (aMw). On preparing sample solutions for the ROS assay, aMw ranging from 150 to 350 was tentatively employed for test substances. The modified ROS assays were applied to 45 phototoxic and 19 non-phototoxic substances, including 44 chemicals and 20 complex materials (plant extracts) for clarification of the predictive performance. Generation of ROS from photo-irradiated samples tended to increase as aMW grew, resulting in the largest number of false-positive predictions at aMW of 350. Some false-negative predictions were also observed when aMW was set at 200 or less. At aMw of 250, all tested phototoxic substances could be correctly identified as photoreactive with no false-negative predictions. Based on these observations, aMw of 250 was found to be suitable for the ROS assay on complex materials, and the sensitivity, specificity, and positive and negative predictivity for the proposed ROS assay were calculated to be 100, 52.6, 83.3, and 100%, respectively. Thus, the proposed approach may be efficacious for predicting phototoxic potentials of complex materials and contribute to the development of new products with a wide photosafety margin.


Subject(s)
Dermatitis, Phototoxic , Humans , Reactive Oxygen Species , Dermatitis, Phototoxic/etiology , Biological Assay , Plant Extracts , Ultraviolet Rays
5.
Int J Pharm ; 564: 492-498, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31022505

ABSTRACT

The present study aimed to develop a photochemically stabilized formulation of dacarbazine [5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide; DTIC] for reducing the production of algogenic photodegradant (5-diazoimidazole-4-carboxamide; Diazo-IC). Photochemical properties of DTIC were characterized by UV-visible light spectral analysis, reactive oxygen species (ROS) assay, and photostability testing. A pharmacokinetic study was conducted after intravenous administration of DTIC formulations (1 mg-DTIC/kg) to rats. DTIC exhibited strong absorption in the UVA range, and photoirradiated DTIC exhibited marked ROS generation. Thus, DTIC had high photoreactive potential. After exposure of DTIC (1 mM) to simulated sunlight (250 W/m2) for 3 min, remaining DTIC and yielded Diazo-IC were estimated to be ca. 230 µM and 600 µM, respectively. The addition of radical scavenger (1 mM), including l-ascorbic acid, l-cysteine (Cys), l-histidine, D-mannitol, l-tryptophan, or l-tyrosine, to DTIC (1 mM) could attenuate DTIC photoreactions, and in particular, the addition of Cys to DTIC brought ca. 34% and 86% inhibition of DTIC photodegradation and Diazo-IC photogeneration, respectively. There were no significant differences in the calculated pharmacokinetic parameters of DTIC between DTIC and DTIC with Cys (0.67 mg/kg). From these findings, the supplementary use of Cys would be an effective approach to improve the photostability of DTIC with less production of Diazo-IC.


Subject(s)
Antineoplastic Agents, Alkylating , Azo Compounds/chemistry , Cysteine/chemistry , Dacarbazine , Free Radical Scavengers/chemistry , Imidazoles/chemistry , Light , Animals , Antineoplastic Agents, Alkylating/blood , Antineoplastic Agents, Alkylating/chemistry , Antineoplastic Agents, Alkylating/pharmacokinetics , Antineoplastic Agents, Alkylating/radiation effects , Dacarbazine/blood , Dacarbazine/chemistry , Dacarbazine/pharmacokinetics , Dacarbazine/radiation effects , Drug Stability , Male , Photolysis , Rats, Sprague-Dawley
6.
Toxicol Lett ; 278: 59-65, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28698097

ABSTRACT

The present study aimed to verify the feasibility of an enzymatic reactive oxygen species (eROS) assay to evaluate the phototoxic risk of compounds after their metabolization. The eROS assay was designed based on the combined use of an in vitro drug metabolism system and a ROS assay. The incubation time of compounds with human hepatic S9 fractions was optimized with the use of fenofibrate (FF), a typical phototoxicant with metabolite-related phototoxicity, and the reproducibility and robustness of the eROS assay were examined using FF. The eROS assay was applied to 12 phototoxic compounds, including 7 phototoxicants with metabolite-related phototoxicity, to clarify the assay performance. According to the eROS data on singlet oxygen generation from FF and metabolic conversion profiles of FF and fenofibric acid, the incubation time of chemicals with human hepatic S9-mix was determined to be 4min. The singlet oxygen-based evaluation system in the eROS assay was found to be acceptable as a high-throughput assay because of its favorable intra-/inter-day reproducibility (coefficient of variation: ca. 8%) and robustness (Z'-factor: 0.23). Singlet oxygen data on phototoxicants with phototoxic metabolites tended to exceed 120% of control, suggesting the feasibility of the eROS assay to evaluate metabolite-related phototoxic potentials. However, further data accumulation is still needed to improve the assay performance because the eROS assay provided false predictions for some compounds. The present eROS assay may be applicable in part for evaluating the phototoxic risk of drug candidates after their metabolization in the early stage of drug discovery.


Subject(s)
Biological Assay , Dermatitis, Phototoxic/etiology , Fenofibrate/toxicity , Liver/drug effects , Photochemical Processes , Singlet Oxygen/metabolism , Toxicity Tests/methods , Biomarkers/metabolism , Biotransformation , Dermatitis, Phototoxic/metabolism , Dose-Response Relationship, Drug , Feasibility Studies , Fenofibrate/metabolism , Fenofibrate/radiation effects , Humans , Liver/enzymology , Reproducibility of Results , Risk Assessment , Time Factors
7.
Toxicol In Vitro ; 34: 113-119, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27058001

ABSTRACT

The present investigation involved an attempt to develop a new reactive oxygen species (ROS) assay system for the photosafety assessment of chemicals using 1,3-diphenylisobenzofuran (DPBF), a fluorescent probe for monitoring ROS generation. The assay conditions of the fluorometric ROS (fROS) assay were optimized focusing on the solvent system, concentration of DPBF, fluorescent determination, screening run time and reproducibility. The photoreactivity of 21 phototoxic and 11 non-phototoxic compounds was assessed by fROS assay, and the obtained ROS data were compared with the results from a micellar ROS (mROS) assay and in vitro/in vivo phototoxicity information to confirm the predictive capacity of the fROS assay. In the optimized fROS assay, intra-day and inter-day precision levels (coefficient of variation) were found to be below 5%, and the Z'-factor for DPBF fluorescence quenching showed a large separation between positive and negative controls. Of all tested compounds, 3 false positive and 7 false negative predictions were observed in the fROS assay, and the negative predictivity for the fROS assay was found to be lower than that for the mROS assay. Although the fROS assay has some limitations, the procedures for it were highly simplified with a marked reduction in screening run time and one analytical sample for monitoring ROS generation from compounds. The fROS assay has the potential to become a new tool for photosafety assessment at an early stage of product development.


Subject(s)
Benzofurans/chemistry , Dermatitis, Phototoxic , Fluorescent Dyes/chemistry , Reactive Oxygen Species/chemistry , Fluorometry , Sunlight
8.
Toxicol In Vitro ; 33: 147-52, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26973152

ABSTRACT

Several testing methods have been established to identify potential phototoxins. The present study was undertaken to clarify the predictive ability of in vitro photosafety assays for photoallergenicity. On the basis of animal and/or clinical photosafety information, 23 photoallergens and 7 non-phototoxic/non-photoallergenic chemicals were selected and subjected to UV/VIS spectral analysis, reactive oxygen species (ROS)/micellar ROS (mROS) assays, and 3T3 neutral red uptake phototoxicity testing (3T3 NRU PT). Of the photoallergens tested, ca. 96% of chemicals had intense UV/VIS absorption with a molar extinction coefficient of over 1000 M(-1) cm(-1), and false-positive predictions were made for 3 non-photoallergenic chemicals. In the ROS assay, all photoallergens were found to be potent ROS generators under exposure to simulated sunlight. In the photosafety prediction based on the ROS assay, the individual specificity was 85.7%, and the positive predictivity and negative predictivity were found to be 95.8% and 100%, respectively. Most of the photoirritant chemicals were correctly identified by the 3T3 NRU PT; however, it provided false predictions for ca. 48% of photoallergens. The orders of sensitivity and specificity for photoallergenicity prediction were estimated to be: [sensitivity] ROS assay>UV/VIS absorption ≫ 3T3 NRU PT, and [specificity] 3T3 NRU PT>ROS assay ≫ UV/VIS absorption. Thus, photochemical assays, in particular the ROS assay, can be used for assessment of photoallergenicity, although there were some false-positive predictions.


Subject(s)
Allergens/toxicity , Dermatitis, Phototoxic , Animals , BALB 3T3 Cells , Biological Assay , Mice , Neutral Red/metabolism , Reactive Oxygen Species/metabolism , Sunlight
9.
J Pharm Sci ; 105(2): 741-746, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26505739

ABSTRACT

The present study aimed to clarify the mechanism of photodegradation of famotidine with riboflavin (FMT/RF), and to develop a photochemically stabilized formulation of FMT/RF. Photochemical properties of RF were characterized by UV-VIS spectral analysis, reactive oxygen species (ROS) assay, and photostability testing. Pharmacokinetic study was conducted in rats after intravenous administration of FMT (1 mg/kg) formulation containing RF (0.01 mg/kg). The UV-VIS spectral pattern of RF partly overlapped with the sunlight spectrum, and ROS generation from photoirradiated RF was remarkable; thus, RF had high photoreactive potential. In the photostability testing, after irradiation (250 W/m(2)), degradation rate for FMT in FMT/RF was ca. 11-fold higher than that in FMT alone. The addition of radical scavengers to FMT/RF led to attenuated photodegradation of FMT/RF; in particular, the addition of L-ascorbic acid (vitamin C; VC) to FMT/RF showed ca. 86% inhibition of the photodegradation of FMT/RF. The pharmacokinetic study on FMT indicated that the addition of VC (1 mg/kg) to FMT/RF had no significant impact on the pharmacokinetic behavior of FMT. These findings suggest that ROS-mediated photochemical reaction would be involved in the photodegradation pathway of FMT/RF, and the complementary use of VC might be an attractive approach to improve the photostability of FMT/RF.


Subject(s)
Chemistry, Pharmaceutical/methods , Famotidine/metabolism , Photolysis , Photosensitizing Agents/metabolism , Riboflavin/metabolism , Animals , Drug Stability , Famotidine/chemistry , Male , Photochemical Processes , Photosensitizing Agents/chemistry , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Riboflavin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL