Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33727419

ABSTRACT

Mature basophils play critical inflammatory roles during helminthic, autoimmune, and allergic diseases through their secretion of histamine and the type 2 cytokines interleukin 4 (IL-4) and IL-13. Basophils are activated typically by allergen-mediated IgE cross-linking but also by endogenous "innate" factors. The aim of this study was to identify the innate stimuli (cytokines, chemokines, growth factors, hormones, neuropeptides, metabolites, and bacterial products) and signaling pathways inducing primary basophil activation. Basophils from naïve mice or helminth-infected mice were cultured with up to 96 distinct stimuli and their influence on basophil survival, activation, degranulation, and IL-4 or IL-13 expression were investigated. Activated basophils show a heterogeneous phenotype and segregate into distinct subsets expressing IL-4, IL-13, activation, or degranulation markers. We find that several innate stimuli including epithelial derived inflammatory cytokines (IL-33, IL-18, TSLP, and GM-CSF), growth factors (IL-3, IL-7, TGFß, and VEGF), eicosanoids, metabolites, TLR ligands, and type I IFN exert significant direct effects on basophils. Basophil activation mediated by distinct upstream signaling pathways is always sensitive to Syk and IκB kinases-specific inhibitors but not necessarily to NFAT, STAT5, adenylate cyclase, or c-fos/AP-1 inhibitors. Thus, basophils are activated by very diverse mediators, but their activation seem controlled by a core checkpoint involving Syk and IκB kinases.


Subject(s)
Basophils/immunology , Basophils/metabolism , I-kappa B Kinase/metabolism , Immunity, Innate , Signal Transduction , Syk Kinase/metabolism , Animals , Basophils/drug effects , Biomarkers , Cell Degranulation , Cytokines/metabolism , Gene Expression , Hormones , Immunity, Innate/drug effects , Inflammation Mediators/metabolism , Mice , Protein Kinase Inhibitors , Signal Transduction/drug effects
2.
Immunol Cell Biol ; 100(10): 791-804, 2022 11.
Article in English | MEDLINE | ID: mdl-36177669

ABSTRACT

Recent studies propose that T follicular helper (Tfh) cells possess a high degree of functional plasticity in addition to their well-defined roles in mediating interleukin-4-dependent switching of germinal center B cells to the production of immunoglobulin (Ig)G1 and IgE antibodies. In particular Tfh cells have been proposed to be an essential stage in Th2 effector cell development that are able to contribute to innate type 2 responses. We used CD4-cre targeted deletion of BCL6 to identify the contribution Tfh cells make to tissue Th2 effector responses in models of atopic skin disease and lung immunity to parasites. Ablation of Tfh cells did not impair the development or recruitment of Th2 effector subsets to the skin and did not alter the transcriptional expression profile or functional activities of the resulting tissue resident Th2 effector cells. However, the accumulation of Th2 effector cells in lung Th2 responses was partially affected by BCL6 deficiency. These data indicate that the development of Th2 effector cells does not require a BCL6 dependent step, implying Tfh and Th2 effector populations follow separate developmental trajectories and Tfh cells do not contribute to type 2 responses in the skin.


Subject(s)
CD4-Positive T-Lymphocytes , T-Lymphocytes, Helper-Inducer , Cell Differentiation , Germinal Center , B-Lymphocytes , Proto-Oncogene Proteins c-bcl-6/genetics
SELECTION OF CITATIONS
SEARCH DETAIL