Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 104(19): 8309-8326, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32813063

ABSTRACT

Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.


Subject(s)
Arabinose , Glycoside Hydrolases , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Molecular Docking Simulation , Sordariales , Substrate Specificity
2.
Int J Mol Sci ; 19(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30241420

ABSTRACT

Human serum albumin (HSA) is a target for reactive oxygen species (ROS), and alterations of its physiological functions caused by oxidation is a current issue. In this work, the amino-acid residues Trp-214 and Lys-199, which are located at site I of HSA, were experimentally and computationally oxidized, and the effect on the binding constant with phenylbutazone was measured. HSA was submitted to two mild oxidizing reagents, taurine monochloramine (Tau-NHCl) and taurine dibromamine (Tau-NBr2). The oxidation of Trp-214 provoked spectroscopic alterations in the protein which were consistent with the formation of N'-formylkynurenine. It was found that the oxidation of HSA by Tau-NBr2, but not by Tau-NHCl, provoked a significant increase in the association constant with phenylbutazone. The alterations of Trp-214 and Lys-199 were modeled and simulated by changing these residues using the putative oxidation products. Based on the Amber score function, the interaction energy was measured, and it showed that, while native HSA presented an interaction energy of -21.3 kJ/mol, HSA with Trp-214 altered to N'-formylkynurenine resulted in an energy of -28.4 kJ/mol, and HSA with Lys-199 altered to its carbonylated form resulted in an energy of -33.9 kJ/mol. In summary, these experimental and theoretical findings show that oxidative alterations of amino-acid residues at site I of HSA affect its binding efficacy.


Subject(s)
Lysine/chemistry , Models, Theoretical , Phenylbutazone/metabolism , Serum Albumin, Human/metabolism , Tryptophan/chemistry , Binding Sites , Humans , Oxidation-Reduction , Phenylbutazone/chemistry , Protein Binding , Serum Albumin, Human/chemistry
3.
J Phys Chem B ; 126(50): 10587-10596, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36512419

ABSTRACT

Conformational changes are an essential feature for the function of some dynamic proteins. Understanding the mechanism of such motions may allow us to identify important properties, which may be directly related to the regulatory function of a protein. Also, this knowledge may be employed for a rational design of drugs that can shift the balance between active and inactive conformations, as well as affect the kinetics of the activation process. Here, the conformational changes in carboxyl-terminal Src kinase, the major catalytic repressor to the Src family of kinases, was investigated, and it was proposed as a functionally related hypothesis. A Cα Structure-Based Model (Cα-SBM) was applied to provide a description of the overall conformational landscape and further analysis complemented by detailed molecular dynamics simulations. As a first approach to Cα-SBM simulations, reversible transitions between active (closed) and inactive (open) forms were modeled as fluctuations between these two energetic basins. It was found that, in addition to the interdomain Carboxyl-terminal SRC Kinase (Csk) correlated motions, a conformational change in the αC helix is required for a complete conformational transition. The result reveals this as an important region of transition control and domain coordination. Restrictions in the αC helix region of the Csk protein were performed, and the analyses showed a direct correlation with the global conformational changes, with this location being propitious for future studies of ligands. Also, the Src Homology 3 (SH3) and SH3 plus Src Homology 2 (SH2) domains were excluded for a direct comparison with experimental results previously published. Simulations where the SH3 was deleted presented a reduction of the transitions during the simulations, while the SH3-SH2 deletion vanishes the Csk transitions, corroborating the experimental results mentioned and linking the conformational changes with the catalytic functionality of Csk. The study was complemented by the introduction of a known kinase inhibitor close to the Csk αC helix region where its consequences for the kinetic behavior and domain displacement of Csk were verified through detailed molecular dynamics. The findings describe the mechanisms involving the Csk αC helix for the transitions and also support the dynamic correlation between SH3 and SH2 domains against the Csk lobes and how local energetic restrictions or interactions in the Csk αC helix can play an important role for long-range motions. The results also allow speculation if the Csk activity is restricted to one specific conformation or a consequence of a state transition, this point being a target for future studies. However, the αC helix is revealed as a potential region for rational drug design.


Subject(s)
Protein-Tyrosine Kinases , src-Family Kinases , Protein-Tyrosine Kinases/metabolism , CSK Tyrosine-Protein Kinase/metabolism , src-Family Kinases/chemistry , src Homology Domains , Phosphotransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL