Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Comp Physiol B ; 194(1): 65-79, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219236

ABSTRACT

During the hibernation season, Arctic ground squirrels (AGS) experience extreme temperature fluctuations (body temperature, Tb, as low as - 3 °C), during which they are mostly physically inactive. Once Tb reaches ~ 15 °C during interbout arousals, hibernators recruit skeletal muscle (SkM) for shivering thermogenesis to reach Tb of ~ 35 °C. Polyunsaturated fatty acids (PUFA) in the diet are known to influence SkM function and metabolism. Recent studies in the cardiac muscle of hibernators have revealed that increased levels of ω-6 and the ω-6:ω-3 PUFA ratio correlate with sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and hibernation status. We hypothesized that diet (increased ω-6:ω-3 PUFA ratio) and torpor status are important in the regulation of the SERCA pump and that this may improve SkM performance during hibernation. Ex vivo functional assays were used to characterize performance changes in SkM (diaphragm) from AGS fed the following diets. (1) Standard rodent chow with an ω-6:ω-3 ratio of 5:1, or (2) a balanced diet with an ω-6:ω-3 ratio of 1:1 that roughly mimics wild diet. We collected diaphragms at three different stages of hibernation (early torpor, late torpor, and arousal) and evaluated muscle function under hypothermic temperature stress at 4 °C, 15 °C, 25 °C, and 37 °C to determine functional resilience. Our data show that torpid animals fed standard rodent chow have faster SkM relaxation when compared to the balanced diet animals. Furthermore, we discovered that standard rodent chow AGS during torpor has higher SkM relaxation kinetics, but this effect of torpor is eliminated in balanced diet AGS. Interestingly, neither diet nor torpor influenced the rate of force development (rate of calcium release). This is the first study to show that increasing the dietary ω-6:ω-3 PUFA ratio improves skeletal muscle performance during decreased temperatures in a hibernating animal. This evidence supports the interpretation that diet can change some functional properties of the SkM, presumably through membrane lipid composition, ambient temperature, and torpor interaction, with an impact on SkM performance.


Subject(s)
Muscle, Skeletal , Sciuridae , Animals , Temperature , Sciuridae/physiology , Diet/veterinary , Muscle Relaxation
2.
Front Physiol ; 14: 1207529, 2023.
Article in English | MEDLINE | ID: mdl-37520836

ABSTRACT

Arctic ground squirrels are small mammals that experience physiological extremes during the hibernation season. Body temperature rises from 1°C to 40°C during interbout arousal and requires tight thermoregulation to maintain rheostasis. Tissues from wild-caught Arctic ground squirrels were sampled over 9 months to assess the expression of proteins key to thermogenic regulation. Animals were sacrificed while aroused, and the extensor digitorum longus, diaphragm, brown adipose tissue, and white adipose tissue were probed using Western blots to assess protein expression and blood was sampled for metabolite analysis. Significant seasonal expression patterns emerged showing differential regulation. Contrary to our prediction, white adipose tissue showed no expression of uncoupling protein 1, but utilization of uncoupling protein 1 peaked in brown adipose tissue during the winter months and began to taper after terminal arousal in the spring. The opposite was true for muscular non-shivering thermogenesis. Sarco/endoplasmic reticulum calcium ATPase 1a and 2a expressions were depressed during the late hibernation season and rebounded after terminal arousal in diaphragm tissues, but only SERCA2a was differentially expressed in the extensor digitorum longus. The uncoupler, sarcolipin, was only detected in diaphragm samples and had a decreased expression during hibernation. The differential timing of these non-shivering pathways indicated distinct functions in maintaining thermogenesis which may depend on burrow temperature, availability of endogenous resources, and other seasonal activity demands on these tissues. These results could be impacted by fiber type makeup of the muscles collected, the body weight of the animal, and the date of entrance or exit from hibernation.

3.
Neurosci Lett ; 696: 13-19, 2019 03 23.
Article in English | MEDLINE | ID: mdl-30528880

ABSTRACT

Hibernation in mammals is a whole-body phenotype that involves profound reductions in oxygen consumption, metabolic reactions, core body temperature, neural activity and heart rate. An important aspect of mammalian hibernation is the ability to reverse this state of hypothermic torpor by rewarming and subsequent arousal. Brown adipose tissue (BAT) and skeletal muscle shivering have been characterized as the predominant driving forces for thermogenesis during arousal. Conversely, the thermogenic contribution of these organs needs to be minimized as hibernating mammals enter torpor. Because skeletal muscle accounts for approximately 40% of the dry mass of the typical mammalian body, we aim to broaden the spotlight to include the importance of down-regulating skeletal muscle non-shivering thermogenesis during hibernation to allow for whole-body cooling and long-term maintenance of a depressed core body temperature when the animal is in torpor. This minireview will briefly describe the current understanding of thermoregulation in hibernating mammals and present new preliminary data on the importance of skeletal muscle and the micro-peptide sarcolipin as a major thermogenic target.


Subject(s)
Down-Regulation , Hibernation/physiology , Hot Temperature , Hypothermia/metabolism , Muscle Proteins/metabolism , Proteolipids/metabolism , Animals , Humans , Muscle, Skeletal/metabolism
4.
Sci Rep ; 8(1): 10216, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976995

ABSTRACT

Misfolding and accumulation of cellular protein aggregates are pathological hallmarks of aging and neurodegeneration. One such protein is α-synuclein, which when misfolded, forms aggregates and disrupts normal cellular functions of the neurons causing Parkinson's disease. Nutritional interventions abundant in pharmacologically potent polyphenols have demonstrated a therapeutic role for combating protein aggregation associated with neurodegeneration. The current study hypothesized that Alaskan bog blueberry (Vaccinum uliginosum), which is high in polyphenolic content, will reduce α-synuclein expression in a model of Caenorhabditis elegans (C. elegans). We observed that blueberry extracts attenuated α-synuclein protein expression, improved healthspan in the form of motility and restored lipid content in the transgenic strain of C. elegans expressing human α-synuclein. We also found reduced gene expression levels of sir-2.1 (ortholog of mammalian Sirtuin 1) in blueberry treated transgenic animals indicating that the beneficial effects of blueberries could be mediated through partial reduction of sirtuin activity. This therapeutic effect of the blueberries was attributed to its xenohormetic properties. The current results highlight the role of Alaskan blueberries in mediating inhibition of sir-2.1 as a novel therapeutic approach to improving pathologies of protein misfolding diseases. Finally, our study warrants further investigation of the structure, and specificity of such small molecules from indigenous natural compounds and its role as sirtuin regulators.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Polyphenols/administration & dosage , Sirtuins/metabolism , Vaccinium/chemistry , alpha-Synuclein/metabolism , Animals , Animals, Genetically Modified/growth & development , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Down-Regulation , Gene Expression Regulation/drug effects , Humans , Plant Extracts/pharmacology , Polyphenols/pharmacology , Protein Aggregates/drug effects , Sirtuins/genetics , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
5.
PLoS One ; 8(2): e57135, 2013.
Article in English | MEDLINE | ID: mdl-23451163

ABSTRACT

Visualizing the dynamic behaviors of immune cells in living tissue has dramatically increased our understanding of how cells interact with their surroundings, contributing important insights into mechanisms of leukocyte trafficking, tumor cell invasion, and T cell education by dendritic cells, among others. Despite substantial advances with various intravital imaging techniques including two-photon microscopy and the generation of multitudes of reporter mice, there is a growing need to assess cell interactions in the context of specific extracellular matrix composition and microvascular functions, and as well, simpler and more widely accessible methods are needed to image cell behaviors in the context of living tissue physiology. Here we present an antibody-based method for intravital imaging of cell interactions with the blood, lymphatic, and the extracellular matrix compartments of the living dermis while simultaneously assessing capillary permeability and lymphatic drainage function. Using the exposed dorsal ear of the anesthetized mouse and a fluorescence stereomicroscope, such events can be imaged in the context of specific extracellular matrix proteins, or matrix-bound chemokine stores. We developed and optimized the method to minimize tissue damage to the ear, rapidly immunostain for multiple extracellular or cell surface receptors of interest, minimize immunotoxicity with pre-blocking Fcγ receptors and phototoxicity with extracellular antioxidants, and highlight the major dermal tissue structures with basement membrane markers. We demonstrate differential migration behaviors of bone marrow-derived dendritic cells, blood-circulating leukocytes, and dermal dendritic cells, with the latter entering sparse CCL21-positive areas of pre-collecting lymphatic vessels. This new method allows simultaneous imaging of cells and tissue structures, microvascular function, and extracellular microenvironment in multiple skin locations for 12 hours or more, with the flexibility of immunolabeling in addition to genetic-based fluorescent reporters.


Subject(s)
Dermis/blood supply , Dermis/immunology , Ear/blood supply , Fluorescent Antibody Technique/methods , Animals , Mice , Mice, Inbred BALB C
6.
Am J Physiol Regul Integr Comp Physiol ; 295(5): R1695-705, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18768765

ABSTRACT

Mechanisms for the loss of muscle contractile function in hyperthermia are poorly understood. This study identified the critical temperature, resulting in a loss of contractile function in isolated diaphragm (thermal tolerance), and then tested the hypotheses 1) that increased reactive oxygen species (ROS) production contributes to the loss of contractile function at this temperature, and 2) eicosanoid metabolism plays an important role in preservation of contractile function in hyperthermia. Contractile function and passive force were measured in rat diaphragm bundles during and after 30 min of exposure to 40, 41, 42 or 43 degrees C. Between 40 and 42 degrees C, there were no effects of hyperthermia, but at 43 degrees C, a significant loss of active force and an increase in passive force were observed. Inhibition of ROS with the antioxidants, Tiron or Trolox, did not inhibit the loss of contractile force at 43 degrees C. Furthermore, treatment with dithiothreitol, a thiol (-SH) reducing agent, did not reverse the effects of hyperthermia. A variety of global lipoxygenase (LOX) inhibitors further depressed force during 43 degrees C and caused a significant loss of thermal tolerance at 42 degrees C. Cyclooxygenase (COX) inhibitors also caused a loss of thermal tolerance at 42 degrees C. Blockage of phospholipase with phospholipase A(2) inhibitors, bromoenol lactone or arachidonyltrifluoromethyl ketone failed to significantly prevent the loss of force at 43 degrees C. Overall, these data suggest that ROS do not play an apparent role in the loss of contractile function during severe hyperthermia in diaphragm. However, functional LOX and COX enzyme activities appear to be necessary for maintaining normal force production in hyperthermia.


Subject(s)
Antioxidants/pharmacology , Eicosanoids/antagonists & inhibitors , Eicosanoids/biosynthesis , Enzyme Inhibitors/pharmacology , Heat Stress Disorders/drug therapy , Heat Stress Disorders/physiopathology , Muscle, Skeletal/physiology , Oxidative Stress/physiology , Animals , Cell Membrane/drug effects , Cell Membrane/pathology , Cell Membrane Permeability/drug effects , Cyclooxygenase Inhibitors/pharmacology , Diaphragm/drug effects , Diaphragm/physiology , Flavanones/pharmacology , Hot Temperature/adverse effects , Lipoxygenase Inhibitors/pharmacology , Male , Muscle Contraction/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Oxidative Stress/drug effects , Prostaglandin-Endoperoxide Synthases/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, Phospholipase A2/antagonists & inhibitors , Receptors, Phospholipase A2/physiology , Regional Blood Flow/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL