Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34963056

ABSTRACT

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Subject(s)
Censuses , Neoplasms/genetics , Neoplasms/immunology , Transcriptome/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor , Cluster Analysis , Cohort Studies , Computational Biology/methods , Flow Cytometry/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/classification , Neoplasms/pathology , RNA-Seq/methods , San Francisco , Universities
2.
Cell ; 147(3): 554-64, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22036564

ABSTRACT

Insights into cancer genetics can lead to therapeutic opportunities. By cross-referencing chromosomal changes with an unbiased genetic screen we identify the ephrin receptor A7 (EPHA7) as a tumor suppressor in follicular lymphoma (FL). EPHA7 is a target of 6q deletions and inactivated in 72% of FLs. Knockdown of EPHA7 drives lymphoma development in a murine FL model. In analogy to its physiological function in brain development, a soluble splice variant of EPHA7 (EPHA7(TR)) interferes with another Eph-receptor and blocks oncogenic signals in lymphoma cells. Consistent with this drug-like activity, administration of the purified EPHA7(TR) protein produces antitumor effects against xenografted human lymphomas. Further, by fusing EPHA7(TR) to the anti-CD20 antibody (rituximab) we can directly target this tumor suppressor to lymphomas in vivo. Our study attests to the power of combining descriptive tumor genomics with functional screens and reveals EPHA7(TR) as tumor suppressor with immediate therapeutic potential.


Subject(s)
Genes, Tumor Suppressor , Lymphoma, Follicular/metabolism , Receptor, EphA7/metabolism , Animals , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Cell Line, Tumor , Chromosomes, Human, Pair 6 , Genomics , Humans , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/genetics , Male , Mice , Neoplasm Transplantation , RNA Interference , Rituximab , Transplantation, Heterologous
3.
Cancer ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676932

ABSTRACT

BACKGROUND: Cancer-related cognitive impairment (CRCI) and anxiety co-occur in patients with cancer. Little is known about mechanisms for the co-occurrence of these two symptoms. The purposes of this secondary analysis were to evaluate for perturbed pathways associated with the co-occurrence of self-reported CRCI and anxiety in patients with low versus high levels of these two symptoms and to identify potential mechanisms for the co-occurrence of CRCI and anxiety using biological processes common across any perturbed neurodegenerative disease pathways. METHODS: Patients completed the Attentional Function Index and the Spielberger State-Trait Anxiety Inventory six times over two cycles of chemotherapy. Based on findings from a previous latent profile analysis, patients were grouped into none versus both high levels of these symptoms. Gene expression was quantified, and pathway impact analyses were performed. Signaling pathways for evaluation were defined with the Kyoto Encyclopedia of Genes and Genomes database. RESULTS: A total of 451 patients had data available for analysis. Approximately 85.0% of patients were in the none class and 15.0% were in the both high class. Pathway impact analyses identified five perturbed pathways related to neurodegenerative diseases (i.e., amyotrophic lateral sclerosis, Huntington disease, Parkinson disease, prion disease, and pathways of neurodegeneration-multiple diseases). Apoptosis, mitochondrial dysfunction, oxidative stress, and endoplasmic reticulum stress were common biological processes across these pathways. CONCLUSIONS: This study is the first to describe perturbations in neurodegenerative disease pathways associated with CRCI and anxiety in patients receiving chemotherapy. These findings provide new insights into potential targets for the development of mechanistically based interventions.

4.
Support Care Cancer ; 32(4): 250, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532105

ABSTRACT

PURPOSE: One plausible mechanistic hypothesis is the potential contribution of inflammatory mechanisms to shortness of breath. This study was aimed to evaluate for associations between the occurrence of shortness of breath and perturbations in inflammatory pathways. METHODS: Patients with cancer reported the occurrence of shortness of breath six times over two cycles of chemotherapy. Latent class analysis was used to identify subgroups of patients with distinct shortness of breath occurrence profiles (i.e., none (70.5%), decreasing (8.2%), increasing (7.8%), high (13.5%)). Using an extreme phenotype approach, whole transcriptome differential gene expression and pathway impact analyses were performed to evaluate for perturbed signaling pathways associated with shortness of breath between the none and high classes. Two independent samples (RNA-sequencing (n = 293) and microarray (n = 295) methodologies) were evaluated. Fisher's combined probability method was used to combine these results to obtain a global test of the null hypothesis. In addition, an unweighted knowledge network was created using the specific pathway maps to evaluate for interconnections among these pathways. RESULTS: Twenty-nine Kyoto Encyclopedia of Genes and Genomes inflammatory signaling pathways were perturbed. The mitogen-activated protein kinase signaling pathway node had the highest closeness, betweenness, and degree scores. In addition, five common respiratory disease-related pathways, that may share mechanisms with cancer-related shortness of breath, were perturbed. CONCLUSIONS: Findings provide preliminary support for the hypothesis that inflammation contribute to the occurrence of shortness of breath in patients with cancer. In addition, the mechanisms that underlie shortness of breath in oncology patients may be similar to other respiratory diseases.


Subject(s)
Dyspnea , Neoplasms , Humans
5.
BMC Bioinformatics ; 24(1): 64, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36829114

ABSTRACT

BACKGROUND: Methods for inferring the three-dimensional (3D) configuration of chromatin from conformation capture assays that provide strictly pairwise interactions, notably Hi-C, utilize the attendant contact matrix as input. More recent assays, in particular split-pool recognition of interactions by tag extension (SPRITE), capture multi-way interactions instead of solely pairwise contacts. These assays yield contacts that straddle appreciably greater genomic distances than Hi-C, in addition to instances of exceptionally high-order chromatin interaction. Such attributes are anticipated to be consequential with respect to 3D genome reconstruction, a task yet to be undertaken with multi-way contact data. However, performing such 3D reconstruction using distance-based reconstruction techniques requires framing multi-way contacts as (pairwise) distances. Comparing approaches for so doing, and assessing the resultant impact of long-range and multi-way contacts, are the objectives of this study. RESULTS: We obtained 3D reconstructions via multi-dimensional scaling under a variety of weighting schemes for mapping SPRITE multi-way contacts to pairwise distances. Resultant configurations were compared following Procrustes alignment and relationships were assessed between associated Procrustes root mean square errors and key features such as the extent of multi-way and/or long-range contacts. We found that these features had surprisingly limited influence on 3D reconstruction, a finding we attribute to their influence being diminished by the preponderance of pairwise contacts. CONCLUSION: Distance-based 3D genome reconstruction using SPRITE multi-way contact data is not appreciably affected by the weighting scheme used to convert multi-way interactions to pairwise distances.


Subject(s)
Chromatin , Chromosomes , Genome , Genomics/methods , Molecular Conformation
6.
Haematologica ; 108(5): 1272-1283, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36700399

ABSTRACT

Hypodiploid acute lymphoblastic leukemia (ALL) is an aggressive blood cancer with a poor prognosis despite intensive chemotherapy or stem cell transplant. Children and adolescents with positive end-of-induction minimal residual disease have an overall survival lower than 30%. However, data regarding therapeutic alternatives for this disease is nearly nonexistent, emphasizing the critical need for new or adjunctive therapies that can improve outcomes. We previously reported on the therapeutic efficacy of venetoclax (ABT-199) in hypodiploid B-lineage ALL but with limitations as monotherapy. In this study, we set out to identify drugs enhancing the anti-leukemic effect of venetoclax in hypodiploid ALL. Using a highthroughput drug screen, we identified dinaciclib, a cyclin-dependent kinase inhibitor that worked synergistically with venetoclax to induce cell death in hypodiploid cell lines. This combination eradicated leukemic blasts within hypodiploid ALL patient-derived xenografts mice with low off-target toxicity. Our findings suggest that dual inhibition of BCL-2 (venetoclax) and CDK9/MCL-1 (dinaciclib) is a promising therapeutic approach in hypodiploid ALL, warranting further investigation to inform clinical trials in this high-risk patient population.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Antineoplastic Agents/pharmacology
7.
Nurs Res ; 72(3): 200-210, 2023.
Article in English | MEDLINE | ID: mdl-36929768

ABSTRACT

BACKGROUND: A psychological symptom cluster is the most common cluster identified in oncology patients. Although inflammatory mechanisms are hypothesized to underlie this cluster, epigenetic contributions are unknown. OBJECTIVES: This study's purpose was to evaluate associations between the occurrence of a psychological symptom cluster and levels of DNA methylation for inflammatory genes in a heterogeneous sample of patients with cancer receiving chemotherapy. METHODS: Prior to their second or third cycle of chemotherapy, 1,071 patients reported the occurrence of 38 symptoms using the Memorial Symptom Assessment Scale. A psychological cluster was identified using exploratory factor analysis. Differential methylation analyses were performed in two independent samples using Illumina Infinium 450K and EPIC microarrays. Expression-associated CpG (eCpG) loci in the promoter region of 114 inflammatory genes on the 450K and 112 genes on the EPIC microarray were evaluated for associations with the psychological cluster. Robust rank aggregation was used to identify differentially methylated genes across both samples. Significance was assessed using a false discovery rate of 0.05 under the Benjamini-Hochberg procedure. RESULTS: Cluster of differentiation 40 ( CD40 ) was differentially methylated across both samples. All six promoter eCpGs for CD40 that were identified across both samples were hypomethylated in the psychological cluster group. CONCLUSIONS: This study is the first to suggest associations between a psychological symptom cluster and differential DNA methylation of a gene involved in tissue inflammation and cell-mediated immunity. Our findings suggest that increased CD40 expression through hypomethylation of promoter eCpG loci is involved in the occurrence of a psychological symptom cluster in patients receiving chemotherapy. These findings suggest a direction for mechanistic studies.


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Syndrome , DNA Methylation , Neoplasms/drug therapy , Neoplasms/genetics , Cluster Analysis
8.
Clin Sci (Lond) ; 135(8): 1053-1063, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33851706

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Thirdhand smoke (THS) is the residual tobacco contamination that remains after the smoke clears. We investigated the effects of THS exposure in utero and during early life in a transgenic Cdkn2a knockout mouse model that is vulnerable to the development of leukemia/lymphoma. Female mice, and their offspring, were exposed from the first day of pregnancy to weaning. Plasma cytokines, body weight and hematologic parameters were measured in the offspring. To investigate THS exposure effects on the development of leukemia/lymphoma, bone marrow (BM) was collected from control and THS-exposed mice and transplanted into BM-ablated recipient mice, which were followed for tumor development for 1 year. We found that in utero and early-life THS exposure caused significant changes in plasma cytokine concentrations and in immune cell populations; changes appeared more pronounced in male mice. Spleen (SP) and BM B-cell populations were significantly lower in THS-exposed mice. We furthermore observed that THS exposure increased the leukemia/lymphoma-free survival in BM transplantation recipient mice, potentially caused by THS-induced B-cell toxicity. A trend towards increased solid tumors in irradiated mice reconstituted with THS-exposed BM stimulates the hypothesis that the immunosuppressive effects of in utero and early-life THS exposure might contribute to carcinogenesis by lowering the host defense to other toxic exposures. Our study adds to expanding evidence that THS exposure alters the immune system and that in utero and early-life developmental periods represent vulnerable windows of susceptibility for these effects.


Subject(s)
Immune System/drug effects , Leukemia/etiology , Lymphoma/etiology , Nicotiana/adverse effects , Smoke/adverse effects , Animals , Leukemia/immunology , Lymphoma/immunology , Mice, Transgenic , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/analysis
9.
Mol Cell ; 52(4): 574-82, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24120665

ABSTRACT

Gene regulation during cell-cycle progression is an intricately choreographed process, ensuring accurate DNA replication and division. However, the translational landscape of gene expression underlying cell-cycle progression remains largely unknown. Employing genome-wide ribosome profiling, we uncover widespread translational regulation of hundreds of mRNAs serving as an unexpected mechanism for gene regulation underlying cell-cycle progression. A striking example is the S phase translational regulation of RICTOR, which is associated with cell cycle-dependent activation of mammalian target of rapamycin complex 2 (mTORC2) signaling and accurate cell-cycle progression. We further identified unappreciated coordination in translational control of mRNAs within molecular complexes dedicated to cell-cycle progression, lipid metabolism, and genome integrity. This includes the majority of mRNAs comprising the cohesin and condensin complexes responsible for maintaining genome organization, which are coordinately translated during specific cell cycle phases via their 5' UTRs. Our findings illuminate the prevalence and dynamic nature of translational regulation underlying the mammalian cell cycle.


Subject(s)
Gene Expression Regulation , Mitosis/genetics , Protein Biosynthesis , 5' Untranslated Regions , Active Transport, Cell Nucleus/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Citric Acid Cycle/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , Genome, Human , HeLa Cells , Humans , Lipid Metabolism/genetics , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Cohesins
10.
Ophthalmology ; 127(6): 804-813, 2020 06.
Article in English | MEDLINE | ID: mdl-32139107

ABSTRACT

PURPOSE: To determine the usefulness of a comprehensive, targeted-capture next-generation sequencing (NGS) assay for the clinical management of children undergoing enucleation for retinoblastoma. DESIGN: Cohort study. PARTICIPANTS: Thirty-two children with retinoblastoma. METHODS: We performed targeted NGS using the UCSF500 Cancer Panel (University of California, San Francisco, San Francisco, CA) on formalin-fixed, paraffin-embedded tumor tissue along with constitutional DNA isolated from peripheral blood, buccal swab, or uninvolved optic nerve. Peripheral blood samples were also sent to a commercial laboratory for germline RB1 mutation testing. MAIN OUTCOME MEASURES: Presence or absence of germline RB1 mutation or deletion, tumor genetic profile, and association of genetic alterations with clinicopathologic features. RESULTS: Germline mutation or deletion of the RB1 gene was identified in all children with bilateral retinoblastoma (n = 12), and these NGS results were 100% concordant with commercial germline RB1 mutation analysis. In tumor tissue tested with NGS, biallelic inactivation of RB1 was identified in 28 tumors and focal MYCN amplification was identified in 4 tumors (2 with wild-type RB1 and 2 with biallelic RB1 inactivation). Additional likely pathogenic alterations beyond RB1 were identified in 13 tumors (41%), several of which have not been reported previously in retinoblastoma. These included focal amplifications of MDM4 and RAF1, as well as damaging mutations involving BCOR, ARID1A, MGA, FAT1, and ATRX. The presence of additional likely pathogenetic mutations beyond RB1 inactivation was associated with aggressive histopathologic features, including higher histologic grade and anaplasia, and also with both unilateral and sporadic disease. CONCLUSIONS: Comprehensive NGS analysis reliably detects relevant mutations, amplifications, and chromosomal copy number changes in retinoblastoma. The presence of genetic alterations beyond RB1 inactivation correlates with aggressive histopathologic features.


Subject(s)
Gene Silencing , Germ-Line Mutation , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retinoblastoma Binding Proteins/genetics , Retinoblastoma/genetics , Retinoblastoma/pathology , Ubiquitin-Protein Ligases/genetics , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , DNA, Neoplasm/genetics , Eye Enucleation , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Paraffin Embedding , Retinal Neoplasms/surgery , Retinoblastoma/surgery , Tissue Fixation
11.
Proc Natl Acad Sci U S A ; 114(40): 10743-10748, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28916733

ABSTRACT

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Subject(s)
Epigenomics , Gene Amplification , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Sequence Deletion , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , DNA Copy Number Variations , DNA Methylation , Gene Expression Profiling , Glioma/pathology , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Tumor Cells, Cultured
12.
Proc Natl Acad Sci U S A ; 113(10): E1343-51, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26903627

ABSTRACT

Common environmental contaminants such as bisphenols and phthalates and persistent contaminants such as polychlorinated biphenyls are thought to influence tissue homeostasis and carcinogenesis by acting as disrupters of endocrine function. In this study we investigated the direct effects of exposure to bisphenol A (BPA), mono-n-butyl phthalate (Pht), and polychlorinated biphenyl 153 (PCB153) on the proteome of primary organotypic cultures of the mouse mammary gland. At low-nanomolar doses each of these agents induced distinct effects on the proteomes of these cultures. Although BPA treatment produced effects that were similar to those induced by estradiol, there were some notable differences, including a reduction in the abundance of retinoblastoma-associated protein and increases in the Rho GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle protein CDC42. Both Pht and PCB153 induced changes that were distinct from those induced by estrogen, including decreased levels of the transcriptional corepressor C-terminal binding protein 1. Interestingly, the three chemicals appeared to alter the abundance of distinct splice forms of many proteins as well as the abundance of several proteins that regulate RNA splicing. Our combined results indicate that the three classes of chemical have distinct effects on the proteome of normal mouse mammary cultures, some estrogen-like but most estrogen independent, that influence diverse biological processes including apoptosis, cell adhesion, and proliferation.


Subject(s)
Environmental Pollutants/toxicity , Mammary Glands, Animal/drug effects , Organoids/drug effects , Proteome/metabolism , Proteomics/methods , Animals , Benzhydryl Compounds/toxicity , Chromatography, High Pressure Liquid , Cluster Analysis , Estrogens, Non-Steroidal/toxicity , Female , Humans , Mammary Glands, Animal/metabolism , Mass Spectrometry , Mice , Organoids/metabolism , Phenols/toxicity , Phthalic Acids/toxicity , Polychlorinated Biphenyls/toxicity , Proteome/classification
13.
Pediatr Blood Cancer ; 65(7): e27034, 2018 07.
Article in English | MEDLINE | ID: mdl-29528181

ABSTRACT

BACKGROUND: Most patients with juvenile myelomonocytic leukemia (JMML) are curable only with allogeneic hematopoietic cell transplantation (HCT). However, the current standard conditioning regimen, busulfan-cyclophosphamide-melphalan (Bu-Cy-Mel), may be associated with higher risks of morbidity and mortality. ASCT1221 was designed to test whether the potentially less-toxic myeloablative conditioning regimen containing busulfan-fludarabine (Bu-Flu) would be associated with equivalent outcomes. PROCEDURE: Twenty-seven patients were enrolled on ASCT1221 from 2013 to 2015. Pre- and post-HCT (starting Day +30) mutant allele burden was measured in all and pre-HCT therapy was administered according to physician discretion. RESULTS: Fifteen patients were randomized (six to Bu-Cy-Mel and nine to Bu-Flu) after meeting diagnostic criteria for JMML. Pre-HCT low-dose chemotherapy did not appear to reduce pre-HCT disease burden. Two patients, however, received aggressive chemotherapy pre-HCT and achieved low disease-burden state; both are long-term survivors. All four patients with detectable mutant allele burden at Day +30 post-HCT eventually progressed compared to two of nine patients with unmeasurable allele burden (P = 0.04). The 18-month event-free survival of the entire cohort was 47% (95% CI, 21-69%), and was 83% (95% CI, 27-97%) and 22% (95% CI, 03-51%) for Bu-Cy-Mel and Bu-Flu, respectively (P = 0.04). ASCT1221 was terminated early due to concerns that the Bu-Flu arm had inferior outcomes. CONCLUSIONS: The regimen of Bu-Flu is inadequate to provide disease control in patients with JMML who present to HCT with large burdens of disease. Advances in molecular testing may allow better characterization of biologic risk, pre-HCT responses to chemotherapy, and post-HCT management.


Subject(s)
Graft Rejection/drug therapy , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myelomonocytic, Juvenile/therapy , Myeloablative Agonists/administration & dosage , Transplantation Conditioning , Busulfan/administration & dosage , Child , Child, Preschool , Female , Follow-Up Studies , Graft Rejection/etiology , Graft vs Host Disease/etiology , Humans , Infant , Infant, Newborn , Leukemia, Myelomonocytic, Juvenile/complications , Male , Prognosis , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
14.
J Pediatr Hematol Oncol ; 40(4): 290-294, 2018 05.
Article in English | MEDLINE | ID: mdl-29432308

ABSTRACT

Hodgkin lymphoma (HL) is the most common malignancy affecting adolescents and young adults. Treatment with a combination of chemotherapy and radiation results in cure rates of >90%. However, radiation therapy causes significant late effects and avoiding radiation entirely for patients who respond to chemotherapy is an accepted strategy. Since 2011, 28 consecutive patients diagnosed with classic HL have been treated with doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) for 4 to 6 cycles. Patients who achieved a complete metabolic response (CMR) as assessed by [F] fluorodeoxyglucose positron emission tomography by the end of chemotherapy did not receive radiation. Among the 27 evaluable patients, 26/27 (96.2%) achieved a CMR with ABVD alone with 24/27 (88.9%) having achieved a CMR after 2 cycles. Event-free survival at 5 years is 90.5% and overall survival is 100% with a median follow-up time of 22.4 and 22.1 months, respectively. Treating pediatric and young adult HL patients with ABVD alone results in CMRs in >95% of patients. Patients who were refractory to ABVD or relapsed after treatment eventually achieved remission with a combination of standard and novel salvage therapies. This regimen demonstrates the feasibility of avoiding upfront radiation in newly diagnosed pediatric HL patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Fluorodeoxyglucose F18/administration & dosage , Hodgkin Disease , Positron-Emission Tomography , Adolescent , Adult , Bleomycin/administration & dosage , Child , Dacarbazine/administration & dosage , Disease-Free Survival , Doxorubicin/administration & dosage , Female , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/drug therapy , Hodgkin Disease/mortality , Humans , Male , Retrospective Studies , Survival Rate , Vinblastine/administration & dosage
15.
Genome Res ; 24(12): 2022-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25236618

ABSTRACT

Detection of DNA copy number aberrations by shallow whole-genome sequencing (WGS) faces many challenges, including lack of completion and errors in the human reference genome, repetitive sequences, polymorphisms, variable sample quality, and biases in the sequencing procedures. Formalin-fixed paraffin-embedded (FFPE) archival material, the analysis of which is important for studies of cancer, presents particular analytical difficulties due to degradation of the DNA and frequent lack of matched reference samples. We present a robust, cost-effective WGS method for DNA copy number analysis that addresses these challenges more successfully than currently available procedures. In practice, very useful profiles can be obtained with ∼0.1× genome coverage. We improve on previous methods by first implementing a combined correction for sequence mappability and GC content, and second, by applying this procedure to sequence data from the 1000 Genomes Project in order to develop a blacklist of problematic genome regions. A small subset of these blacklisted regions was previously identified by ENCODE, but the vast majority are novel unappreciated problematic regions. Our procedures are implemented in a pipeline called QDNAseq. We have analyzed over 1000 samples, most of which were obtained from the fixed tissue archives of more than 25 institutions. We demonstrate that for most samples our sequencing and analysis procedures yield genome profiles with noise levels near the statistical limit imposed by read counting. The described procedures also provide better correction of artifacts introduced by low DNA quality than prior approaches and better copy number data than high-resolution microarrays at a substantially lower cost.


Subject(s)
Computational Biology , DNA Copy Number Variations , Genome, Human , High-Throughput Nucleotide Sequencing , Algorithms , Base Composition , Cell Line, Tumor , Comparative Genomic Hybridization , Computational Biology/methods , Genomics/methods , Humans , Neoplasms/genetics , Software
16.
Genome Res ; 24(5): 761-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24709822

ABSTRACT

Aberrant DNA hypomethylation may play an important role in the growth rate of glioblastoma (GBM), but the functional impact on transcription remains poorly understood. We assayed the GBM methylome with MeDIP-seq and MRE-seq, adjusting for copy number differences, in a small set of non-glioma CpG island methylator phenotype (non-G-CIMP) primary tumors. Recurrent hypomethylated loci were enriched within a region of chromosome 5p15 that is specified as a cancer amplicon and also encompasses TERT, encoding telomerase reverse transcriptase, which plays a critical role in tumorigenesis. Overall, 76 gene body promoters were recurrently hypomethylated, including TERT and the oncogenes GLI3 and TP73. Recurring hypomethylation also affected previously unannotated alternative promoters, and luciferase reporter assays for three of four of these promoters confirmed strong promoter activity in GBM cells. Histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq on tissue from the GBMs uncovered peaks that coincide precisely with tumor-specific decrease of DNA methylation at 200 loci, 133 of which are in gene bodies. Detailed investigation of TP73 and TERT gene body hypomethylation demonstrated increased expression of corresponding alternate transcripts, which in TP73 encodes a truncated p73 protein with oncogenic function and in TERT encodes a putative reverse transcriptase-null protein. Our findings suggest that recurring gene body promoter hypomethylation events, along with histone H3K4 trimethylation, alter the transcriptional landscape of GBM through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Mutation , Promoter Regions, Genetic , CpG Islands , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Telomerase/genetics , Telomerase/metabolism , Transcriptional Activation , Tumor Protein p73 , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Zinc Finger Protein Gli3
17.
Proc Natl Acad Sci U S A ; 110(11): 4245-50, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23431203

ABSTRACT

Large-scale integrated cancer genome characterization efforts including the cancer genome atlas and the cancer cell line encyclopedia have created unprecedented opportunities to study cancer biology in the context of knowing the entire catalog of genetic alterations. A clinically important challenge is to discover cancer subtypes and their molecular drivers in a comprehensive genetic context. Curtis et al. [Nature (2012) 486(7403):346-352] has recently shown that integrative clustering of copy number and gene expression in 2,000 breast tumors reveals novel subgroups beyond the classic expression subtypes that show distinct clinical outcomes. To extend the scope of integrative analysis for the inclusion of somatic mutation data by massively parallel sequencing, we propose a framework for joint modeling of discrete and continuous variables that arise from integrated genomic, epigenomic, and transcriptomic profiling. The core idea is motivated by the hypothesis that diverse molecular phenotypes can be predicted by a set of orthogonal latent variables that represent distinct molecular drivers, and thus can reveal tumor subgroups of biological and clinical importance. Using the cancer cell line encyclopedia dataset, we demonstrate our method can accurately group cell lines by their cell-of-origin for several cancer types, and precisely pinpoint their known and potential cancer driver genes. Our integrative analysis also demonstrates the power for revealing subgroups that are not lineage-dependent, but consist of different cancer types driven by a common genetic alteration. Application of the cancer genome atlas colorectal cancer data reveals distinct integrated tumor subtypes, suggesting different genetic pathways in colon cancer progression.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Databases, Genetic , Epigenomics , Gene Expression Regulation , Genes, Neoplasm , Genomics/methods , Breast Neoplasms/metabolism , Colorectal Neoplasms/metabolism , Female , Humans , Male
18.
Bioinformatics ; 29(23): 2995-3002, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24048356

ABSTRACT

MOTIVATION: The translational landscape of diverse cellular systems remains largely uncharacterized. A detailed understanding of the control of gene expression at the level of messenger RNA translation is vital to elucidating a systems-level view of complex molecular programs in the cell. Establishing the degree to which such post-transcriptional regulation can mediate specific phenotypes is similarly critical to elucidating the molecular pathogenesis of diseases such as cancer. Recently, methods for massively parallel sequencing of ribosome-bound fragments of messenger RNA have begun to uncover genome-wide translational control at codon resolution. Despite its promise for deeply characterizing mammalian proteomes, few analytical methods exist for the comprehensive analysis of this paired RNA and ribosome data. RESULTS: We describe the Babel framework, an analytical methodology for assessing the significance of changes in translational regulation within cells and between conditions. This approach facilitates the analysis of translation genome-wide while allowing statistically principled gene-level inference. Babel is based on an errors-in-variables regression model that uses the negative binomial distribution and draws inference using a parametric bootstrap approach. We demonstrate the operating characteristics of Babel on simulated data and use its gene-level inference to extend prior analyses significantly, discovering new translationally regulated modules under mammalian target of rapamycin (mTOR) pathway signaling control.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Protein Biosynthesis/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Software , Algorithms , Animals , Codon/metabolism , Computer Simulation , Gene Expression Regulation , Humans , RNA, Messenger/genetics , Ribosomes/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
19.
Breast Cancer Res ; 15(4): R60, 2013.
Article in English | MEDLINE | ID: mdl-23883667

ABSTRACT

INTRODUCTION: Ductal carcinoma in situ (DCIS) is characterized by non-invasive cancerous cell growth within the breast ducts. Although radiotherapy is commonly used in the treatment of DCIS, the effect and molecular mechanism of ionizing radiation (IR) on DCIS are not well understood, and invasive recurrence following radiotherapy remains a significant clinical problem. This study investigated the effects of IR on a clinically relevant model of Akt-driven DCIS and identified possible molecular mechanisms underlying invasive progression in surviving cells. METHODS: We measured the level of phosphorylated-Akt (p-Akt) in a cohort of human DCIS specimens by immunohistochemistry (IHC) and correlated it with recurrence risk. To model human DCIS, we used Akt overexpressing human mammary epithelial cells (MCF10A-Akt) which, in three-dimensional laminin-rich extracellular matrix (lrECM) and in vivo, form organotypic DCIS-like lesions with lumina expanded by pleiomorphic cells contained within an intact basement membrane. In a population of cells that survived significant IR doses in three-dimensional lrECM, a malignant phenotype emerged creating a model for invasive recurrence. RESULTS: P-Akt was up-regulated in clinical DCIS specimens and was associated with recurrent disease. MCF10A-Akt cells that formed DCIS-like structures in three-dimensional lrECM showed significant apoptosis after IR, preferentially in the luminal compartment. Strikingly, when cells that survived IR were repropagated in three-dimensional lrECM, a malignant phenotype emerged, characterized by invasive activity, up-regulation of fibronectin, α5ß1-integrin, matrix metalloproteinase-9 (MMP-9) and loss of E-cadherin. In addition, IR induced nuclear translocation and binding of nuclear factor-kappa B (NF-κB) to the ß1-integrin promoter region, associated with up-regulation of α5ß1-integrins. Inhibition of NF-κB or ß1-integrin signaling abrogated emergence of the invasive activity. CONCLUSIONS: P-Akt is up-regulated in some human DCIS lesions and is possibly associated with recurrence. MCF10A-Akt cells form organotypic DCIS-like lesions in three-dimensional lrECM and in vivo, and are a plausible model for some forms of human DCIS. A population of Akt-driven DCIS-like spheroids that survive IR progresses to an invasive phenotype in three-dimensional lrECM mediated by ß1-integrin and NF-κB signaling.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Integrin beta1/metabolism , NF-kappa B/metabolism , Signal Transduction , Animals , Apoptosis/genetics , Apoptosis/radiation effects , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Carcinoma, Intraductal, Noninfiltrating/metabolism , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Intraductal, Noninfiltrating/radiotherapy , Cell Line, Tumor , Disease Models, Animal , Enzyme Activation , Female , Heterografts , Humans , Integrin beta1/genetics , Mice , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Radiation, Ionizing , Spheroids, Cellular , Tumor Cells, Cultured , Up-Regulation
20.
PLoS One ; 18(3): e0282177, 2023.
Article in English | MEDLINE | ID: mdl-36857322

ABSTRACT

There are currently no clinical strategies utilizing tumor gene expression to inform therapeutic selection for patients with head and neck squamous cell carcinoma (HNSCC). One of the challenges in developing predictive biomarkers is the limited characterization of preclinical HNSCC models. Patient-derived xenografts (PDXs) are increasingly recognized as translationally relevant preclinical avatars for human tumors; however, the overall transcriptomic concordance of HNSCC PDXs with primary human HNSCC is understudied, especially in human papillomavirus-associated (HPV+) disease. Here, we characterized 64 HNSCC PDXs (16 HPV+ and 48 HPV-) at the transcriptomic level using RNA-sequencing. The range of human-specific reads per PDX varied from 64.6%-96.5%, with a comparison of the most differentially expressed genes before and after removal of mouse transcripts revealing no significant benefit to filtering out mouse mRNA reads in this cohort. We demonstrate that four previously established HNSCC molecular subtypes found in The Cancer Genome Atlas (TCGA) are also clearly recapitulated in HNSCC PDXs. Unsupervised hierarchical clustering yielded a striking natural division of HNSCC PDXs by HPV status, with C19orf57 (BRME1), a gene previously correlated with positive response to cisplatin in cervical cancer, among the most significantly differentially expressed genes between HPV+ and HPV- PDXs. In vivo experiments demonstrated a possible relationship between increased C19orf57 expression and superior anti-tumor responses of PDXs to cisplatin, which should be investigated further. These findings highlight the value of PDXs as models for HPV+ and HPV- HNSCC, providing a resource for future discovery of predictive biomarkers to guide treatment selection in HNSCC.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Humans , Animals , Mice , Squamous Cell Carcinoma of Head and Neck , Transcriptome , Heterografts , Cisplatin , Human Papillomavirus Viruses , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL