Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Luminescence ; 38(6): 672-679, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37078125

ABSTRACT

Pharmaceutical product quality control (QC) needs quick, sensitive and economical procedures to deliver high throughput at low cost, which is the key factor considered by such economic facilities. To lessen the risky effects of research laboratories, researchers must take into account the ecological impacts. α-Mangostin (MAG) exhibit anti-inflammatory, antioxidant, anticancer, anti-allergic, antibacterial, antifungal, antiviral and antimalarial activities. Based on the spectrofluorimetric approach, a novel straightforward, sensitive and environmentally friendly method for MAG determination was developed and validated. Many variables were investigated to improve MAG native fluorescence, including solvent type, buffers, pH and additional surfactants. The best MAG fluorescence sensitivity was found in Britton-Robinson buffer (pH 4) at 450 nm after irradiation at 350 nm in the concentration range of 5-50 ng ml-1 . The technique was successfully used to determine the presence of MAG in both its approved dose forms and in samples of spiked human plasma, as per FDA standards for validation. According to their evaluation on two recent greenness criteria (GAPI [Green Analytical Procedure Index] and AGREE [Analytical GREEnness]), the suggested approach has been shown to be environmentally beneficial because it normally uses biodegradable chemicals in solvent-free aqueous phases.


Subject(s)
Micelles , Xanthones , Humans , Antioxidants/pharmacology , Spectrometry, Fluorescence/methods , Xanthones/pharmacology , Solvents
2.
Luminescence ; 37(4): 656-664, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35142060

ABSTRACT

An approved, straightforward, fast, and delicate spectrofluorimetric strategy was developed for the estimation of tepotinib (TEPO), sotorasib (SOTO), and darolutamide (DARO) as new antineoplastic drugs. The spectrofluorimetric strategy was based on quantitative fluorescence quenching of MER at 538 nm after being excited at 350 nm by the addition of the cited drugs in the presence of acetate buffer (pH 3.5). The degree of fluorescence quenching was directly proportional to the concentrations of the cited drugs within the concentration range of 0.5-10.0, 0.2-10, and 0.4-10.0 µg ml-1 for TEPO, SOTO, and DARO, respectively. Mean ± standard deviation (SD) were calculated for the studied drugs as follows; 99.9 ± 0.87, 99.72 ± 1.08, and 100.21 ± 1.44, for TEPO, SOTO, and DARO, respectively. Limit of detection (LOD) values were 0.16, 0.05, and 0.11 µg ml-1 , whereas limit of quantitation (LOQ) values were 0.5, 0.15, and 0.36 µg ml-1 for TEPO, SOTO, and DARO, respectively. Statistical comparison through detailed strategies produced greater understanding and found that there were no noteworthy contrasts in exactness and exactness between strategies. The proposed strategy was used effectively to analyze the measurement of different forms of the examined drugs. Moreover, the recommended fluorimetric strategy was used for examination of TEPO, SOTO, and DARO in human plasma and urine tests.


Subject(s)
Antineoplastic Agents , Merbromin , Humans , Piperazines , Piperidines , Pyrazoles , Pyridazines , Pyridines , Pyrimidines , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL