Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(25): 13569-13577, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31134973

ABSTRACT

Recently, copper chalcogenides have attracted great attention due to their potential application for mid- to high-temperature thermoelectric power generation. In this work, we report the thermoelectric properties of Cu2Se compounds with different sample preparation processes and the inclusion of a nanoscale Ag2Se powder synthesized with a unique wet chemistry procedure. The Cu2Se compounds were prepared by solid state reaction (SSR), fast quenching (FQ) and mechanically alloyed with nanostructured Ag2Se (NM) followed by hot pressing. High temperature transport properties were assessed by the Seebeck coefficient, electrical conductivity and thermal conductivity measurements. Structural characterization demonstrates that the nano-Ag2Se included sample is multi-phase with several nanoscale features not seen in the Cu2Se samples prepared in the standard method. As a result, the Cu2Se-NM sample possesses a miniscule thermal conductivity, with values as low as 0.5 W m-1 K-1. Fortunately, the nano-inclusions present in the Cu2Se-NM sample do not significantly disrupt electronic transport, preserving the power factor at a consistently high value over a broad range of temperatures. Consequently, the nano-Ag2Se included sample exhibits large average ZT values and a maximum of 1.85 at 800 K that rivals some of the best thermoelectrics currently available. Here, we present microstructural and transport evidence that the wet chemistry technique implemented in our study enables the optimization of thermoelectric performance in superionic conductor Cu2Se.

2.
J Phys Condens Matter ; 32(48): 485804, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32897875

ABSTRACT

Magnetization measurements have been performed to understand the role of the magnetic structure on the superconducting properties of epitaxial thin films of Ba1-x La x Fe2As2 (x = 0.08, 0.13, and 0.18) deposited on single crystal (001)-oriented MgO substrates by pulsed laser deposition. All samples exhibit a reentrant-spinglass like behavior at normal state. At lower temperatures, we observe the same magnetic state coexisting with superconductivity and it is also observed a prominent non-linear giant diamagnetism in an intermediate temperature range just above the superconducting phase transition temperature. Furthermore, no significant change in the magnetic domain structure was detected by the onset of superconductivity. Based on their magnetic states, we claim that each domain (as a disconnected superconducting island) has its own bulk superconducting properties. Finally, we discussed the dual character played by the La atoms in the superconducting properties. That duality character has been also confirmed by analyzing resistivity data.

SELECTION OF CITATIONS
SEARCH DETAIL