Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Geophys Res Lett ; 45(10): 5166-5176, 2018 May 28.
Article in English | MEDLINE | ID: mdl-30381777

ABSTRACT

1998-2016 ozone trends in the lower stratosphere (LS) are examined using the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) and related NASA products. After removing biases resulting from step-changes in the MERRA-2 ozone observations, a discernible negative trend of -1.67±0.54 Dobson units per decade (DU/decade) is found in the 10-km layer above the tropopause between 20°N and 60°N. A weaker but statistically significant trend of -1.17±0.33 DU/decade exists between 50°S and 20°S. In the Tropics, a positive trend is seen in a 5-km layer above the tropopause. Analysis of an idealized tracer in a model simulation constrained by MERRA-2 meteorological fields provides strong evidence that these trends are driven by enhanced isentropic transport between the tropical (20°S-20°N) and extratropical LS in the past two decades. This is the first time that a reanalysis dataset has been used to detect and attribute trends in lower stratospheric ozone.

2.
Commun Earth Environ ; 4(1): 187, 2023.
Article in English | MEDLINE | ID: mdl-38665179

ABSTRACT

Extreme cold events over North America such as the February 2021 cold wave have been suggested to be linked to stratospheric polar vortex stretching. However, it is not resolved how robustly and on which timescales the stratosphere contributes to the surface anomalies. Here we introduce a simple measure of stratospheric wave activity for reanalyses and model outputs. In contrast to the well-known surface influences of sudden stratospheric warmings (SSWs) that increase the intraseasonal persistence of weather regimes, we show that extreme stratospheric wave events are accompanied by intraseasonal fluctuations between warm and cold spells over North America in observations and climate models. Particularly, strong stratospheric wave events are followed by an increased risk of cold extremes over North America 5-25 days later. Idealized simulations in an atmospheric model with a well-resolved stratosphere corroborate that strong stratospheric wave activity precedes North American cold spells through vertical wave coupling. These findings potentially benefit the predictability of high-impact winter cold extremes over North America.

3.
J Adv Model Earth Syst ; 12(8): e2019MS002025, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999704

ABSTRACT

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden-Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7-3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

4.
J Geophys Res Atmos ; 123(20): 11377-11391, 2018 Oct 27.
Article in English | MEDLINE | ID: mdl-32745154

ABSTRACT

Previous observational studies have found a persistent maximum in stratospheric water vapor (SWV) in the upper troposphere lower stratosphere (UTLS) confined by the upper-level anticyclone over the Asian summer monsoon region. This study investigates the simulation of SWV in the Whole Atmosphere Community Climate Model (WACCM). WACCM generally tends to simulate a SWV maximum over the central Pacific Ocean, but this bias is largely improved in the high vertical resolution version. The high vertical resolution model with increased vertical layers in the UTLS is found to have a less stratified UTLS over the central Pacific Ocean compared with the low vertical resolution model. It therefore simulates a steepened PV gradient over the central Pacific Ocean that better closes the upper-level anticyclone and confines the SWV within the enhanced transport barrier.

5.
J Geophys Res Atmos ; 122(6): 3282-3298, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-32850271

ABSTRACT

While the importance of the seasonal migration of the zonally averaged Hadley circulation on interhemispheric transport of trace gases has been recognized, few studies have examined the role of the zonally asymmetric monsoonal circulation. This study investigates the role of monsoon-like zonally asymmetric heating on interhemispheric transport using a dry atmospheric model that is forced by idealized Newtonian relaxation to a prescribed radiative equilibrium temperature. When only the seasonal cycle of zonally symmetric heating is considered, the mean age of air in the Southern Hemisphere since last contact with the Northern Hemisphere midlatitude boundary layer, is much larger than the observations. The introduction of monsoon-like zonally asymmetric heating not only reduces the mean age of tropospheric air to more realistic values, but also produces an upper-tropospheric cross-equatorial transport pathway in boreal summer that resembles the transport pathway simulated in the NASA Global Modeling Initiative (GMI) Chemistry Transport Model driven with MERRA meteorological fields. These results highlight the monsoon-induced eddy circulation plays an important role in the interhemispheric transport of long-lived chemical constituents.

SELECTION OF CITATIONS
SEARCH DETAIL