Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(39): 19342-19351, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501350

ABSTRACT

Highly expanded Cretaceous-Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)-International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarse-grained suevite, including clasts possibly generated by melt-water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impact-induced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms.

2.
Sci Rep ; 12(1): 11376, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790847

ABSTRACT

To fully assess the resilience and recovery of life in response to the Cretaceous-Paleogene (K-Pg) boundary mass extinction ~ 66 million years ago, it is paramount to understand biodiversity prior to the Chicxulub impact event. The peak ring of the Chicxulub impact structure offshore the Yucatán Peninsula (México) was recently drilled and extracted a ~ 100 m thick impact-generated, melt-bearing, polymict breccia (crater suevite), which preserved carbonate clasts with common biogenic structures. We pieced this information to reproduce for the first time the macrobenthic tracemaker community and marine paleoenvironment prior to a large impact event at the crater area by combining paleoichnology with micropaleontology. A variable macrobenthic tracemaker community was present prior to the impact (Cenomanian-Maastrichtian), which included soft bodied organisms such as annelids, crustaceans and bivalves, mainly colonizing softgrounds in marine oxygenated, nutrient rich, conditions. Trace fossil assemblage from these upper Cretaceous core lithologies, with dominant Planolites and frequent Chondrites, corresponds well with that in the overlying post-impact Paleogene sediments. This reveals that the K-Pg impact event had no significant effects (i.e., extinction) on the composition of the macroinvertebrate tracemaker community in the Chicxulub region.


Subject(s)
Extinction, Biological , Meteoroids , Biodiversity , Fossils , Mexico
3.
Nature ; 429(6993): 731-4, 2004 Jun 17.
Article in English | MEDLINE | ID: mdl-15201902

ABSTRACT

Recent exploration has revealed extensive geological evidence for a water-rich past in the shallow subsurface of Mars. Images of in situ and loose accumulations of abundant, haematite-rich spherical balls from the Mars Exploration Rover 'Opportunity' landing site at Meridiani Planum bear a striking resemblance to diagenetic (post-depositional), haematite-cemented concretions found in the Jurassic Navajo Sandstone of southern Utah. Here we compare the spherical concretions imaged on Mars to these terrestrial concretions, and investigate the implications for analogous groundwater-related formation mechanisms. The morphology, character and distribution of Navajo haematite concretions allow us to infer host-rock properties and fluid processes necessary for similar features to develop on Mars. We conclude that the formation of such spherical haematite concretions requires the presence of a permeable host rock, groundwater flow and a chemical reaction front.

4.
Astrobiology ; 6(4): 527-45, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16916280

ABSTRACT

Two terrestrial environments that have been proposed as analogs for the iron oxide precipitation in the Meridiani Planum region of Mars include the Rio Tinto precipitates and southern Utah marble concretions. Samples of two typical Utah iron oxide concretions and iron oxide precipitates in contact with biofilms from Rio Tinto have been studied to determine whether evidence could be found for biomediation in the precipitation process and to identify likely locations for fossil microorganisms. Scanning electron microscopy, energy dispersive X-ray, and gas chromatography-mass spectrometry (GC-MS) were used to search for biosignatures in the Utah marbles. The precipitation of iron oxides resembles known biosignatures, though organic compounds could not be confirmed with GC-MS analysis. In contrast, textural variations induced by biological activity are abundant in the modern Rio Tinto samples. Although no compelling evidence of direct or indirect biomediation was found in the Utah marbles, the ultrastructure of the iron oxide cement in the concretion suggests an inward growth during concretion precipitation from an initially spherical redox front. No indication for growth from a physical nucleus was found.


Subject(s)
Ferric Compounds/chemistry , Ferric Compounds/isolation & purification , Mars , Chemical Precipitation , Exobiology , Extraterrestrial Environment/chemistry , Gas Chromatography-Mass Spectrometry , Microscopy, Electron, Scanning , Utah
5.
Sci Rep ; 4: 6724, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25340551

ABSTRACT

Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably 'rubble pile' asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids.

6.
Sci Rep ; 3: 3487, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24336641

ABSTRACT

Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.


Subject(s)
Fossils , Fungi , Solar System , Ecosystem , Geological Phenomena , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL